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As California invests in climate mitigation 
and adaptation, it is essential to understand 
the relative impact of climate change across 
the state’s diverse communities. This report 
supports ongoing efforts by the California 
Air Resources Board (CARB) to better 
understand the impacts of greenhouse gas 
emissions on human welfare by introducing 
the Climate Vulnerability Metric (CVM). 
The CVM is the first metric in California 
specifically focused on quantifying the 
community-level impacts of a warming 
climate on human welfare. 

The CVM is an aggregation of the impacts 
of climate change that can be quantified

at the census tract level using currently 
available research. The CVM includes 
the projected impacts of climate change 
on human welfare across four impact 
categories through midcentury (2050) 
under a moderate emissions scenario (RCP 
4.51) that is broadly consistent with the 
world’s countries meeting their current 
emissions reduction pledges under the 
Paris Climate Agreement. This time horizon 
has the benefit of capturing the collective 
effect of current and near-term global 
greenhouse gas emissions on California’s 
climate system. There are nine components 
of climate impacts (Figure ES1) that when 
aggregated, are the total CVM in each

1 Representative Concentration Pathway (RCP) 4.5.

Figure ES1: Categories of climate change impacts on human welfare included in the 
Climate Vulnerability Metric.

Executive Summary
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census tract.

The CVM is constructed by aggregating 
climate change impact estimates across 
the nine impact components shown in 
Figure ES1. In order to ensure that the 
CVM represents the diversity of California 
communities, it is reported as the 
aggregate monetized impact of climate 
change as a percentage of census tract-
specific incomes.2 This format accounts for 
current levels of economic inequality across 
California and captures the impact of a 
warming climate on fundamental aspects 
of community well-being such as public 
health, housing, and our ability to earn a 

livelihood. The higher the CVM for a given 
census tract, the more damaging the 
projected impacts of climate change on 
human welfare. A lower CVM is associated 
with lower impacts and/or greater resilience, 
while a negative CVM value represents a 
projected beneficial impact of moderate 
climate change by 2050. Figure ES2 outlines 
the five-step method used to calculate the 
CVM. 

2 Per capita income in 2019 for census tracts across California ranges from $633 to $176,388, with a median of 
$32,181 ($2019). Source: American Community Survey.

Figure ES2: 5-Step Method for Calculating the CVM. Constructing the CVM requires five main 
steps, beginning by quantifying the impacts of climate change on human welfare and ending with 
aggregating impacts across categories and reporting the CVM as a single metric for each census 
tract. Figure ES2 overviews these steps.
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Figure ES3 presents a map of the CVM at the 
census tract level. Each census tract CVM 
value is a comprehensive total of the 9

category-specific estimates, calculated 
using the five-step method described in 
Figure ES2.

Figure ES3: Climate Vulnerability Metric (CVM). The map shows combined impacts of climate 
change in 2050 under a moderate emissions scenario (RCP 4.5), reported as a share of 2019 census 
tract income. For example, a CVM value of 3 implies that by 2050, a census tract is projected to 
experience human welfare impacts of climate change that amount to 3% of annual income.  Impacts 
are combined across the categories shown in Figure ES1. The higher the CVM for a given census 
tract, the more damaging the projected impacts of climate change on human welfare. Census 
tracts with high CVMs are represented by positive percentages in orange and red. A lower CVM is 
associated with lower projected impacts of climate change, shown in yellow, while a negative CVM 
value represents a projected beneficial impact of climate change (e.g., through reductions in deaths 
caused by extremely cold winter weather). Negative CMVs are represented by negative percentages 
in blue.
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The CVM shows that climate change 
will have highly unequal impacts across 
Californian census tracts. While some 
regions in the southeast are estimated to 
suffer damages that exceed 5% of annual 
income, other high-elevation regions are 
estimated to see benefits of up to 10%. 
Some low-lying urban areas are estimated 
to be particularly vulnerable, while much of 
the Central Valley suffers at least moderate 
damages. The wide diversity of projected 
impacts underscores the importance 
of estimating climate vulnerability at a 
community level.

As a tool for California policymakers and 
communities, the CVM provides information 
about the relative climate vulnerability that 
Californians may face in the future. The 
CVM can direct funding to communities 
with higher relative climate vulnerability 
for adaptation and mitigation. In addition, 
the CVM can direct funding by impact 
category — census tracts with high energy 
cost impacts could receive reduced rate 
plants or targeted funding. The CVM can 
also be used by policymakers to designate 
communities as “vulnerable” to climate 
change or “disadvantaged” similar to the 
approach in CalEnviroScreen. The CVM can 
also be used in combination with existing 
screening tools to identify communities 
that are vulnerable to the impacts of climate 
change as well as current environmental 
and health hazards.

It is important to note that the impacts 
included in the CVM do not represent the 
total cost climate change will likely impose 
on individual and household welfare across 
California. For example, currently available 
research is not robust enough for us to 
include a quantification of the impact of 
climate change-driven changes in wildfires 
on human welfare at a census tract level. 

There are also areas of California, including 
rural and tribal communities, that are not 
accurately reflected through a census 
tract level tool. Additionally, the CVM can 
be expanded to include additional socio-
demographic data that better reflects the 
under-represented regions of California.

As climate economics research continues to 
mature, the CVM can be expanded to include 
additional categories and improve the 
coverage and granularity of communities, 
offering a more comprehensive assessment 
of vulnerability. 

While these are important limitations, 
the CVM represents the only census tract-
level analysis of climate vulnerability 
across California. Critically, the CVM is 
built from community-specific estimates 
of vulnerability to climate change, and it 
will be straightforward to build upon these 
estimates as future research evolves.

CVM Report | 4
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Evidence continues to mount that 
California’s climate is rapidly changing. 
Past greenhouse gas emissions from fossil 
fuels have already increased temperatures, 
altered precipitation patterns, and raised 
sea levels. The resulting climate hazards—
floods, heat waves, droughts, intense 
storm activity, and wildfires—threaten 
communities across the state. Both these 
extreme events and chronic, slower shifts 
in temperature, precipitation, and sea level 
rise impact human welfare in ways that 
Californians can feel today. Climate change 
will continue to affect California, but the 
implications of climate change will not 
be the same across all communities, each 
with unique populations and geographic 
characteristics.  

Over the last decade, advances in data 
and economic research have dramatically 
expanded knowledge of the links between 
changing climate conditions and human 
welfare. A number of these new, empirically 
grounded studies make it possible to 
quantify current and anticipated climate 
impacts locally, accounting for disparities 
in how populations respond to climate 
change. This climate economics research 
can provide insight into the relative 
vulnerability of each of California’s diverse 
communities to climate change’s impacts 
on human welfare. 

A wide array of California climate 
change assessments exists, with varying 
approaches to assessing impacts on human 
welfare. While no single study has captured 
the large and complex universe of potential 
costs that California may face, the research 
community has made great strides over the

last two decades in measuring the potential 
risks of specific climate hazards and 
documenting them in an array of state 
climate assessments.i    This report contributes 
to this body of work by quantifying the 
relative risks facing California’s diverse 
communities, accounting for the fact that 
vulnerable populations have less capacity 
to anticipate, cope with, and respond to 
changing climate conditions, as well as 
fewer resources to recover and adapt to be 
better protected from future events.ii 

Essential to this effort is a body of climate 
economic research that uses cloud 
computing and increasingly available 
empirical data to identify the effects of 
changing climate conditions on social and 
economic conditions at a local scale. This 
research shows that while a ton of carbon 
emitted anywhere will have the same 
impact on the atmosphere, it is inaccurate 
to assume that increased physical hazards, 
such as more frequent extreme heat and 
damaging coastal storms, will impact 
all California communities in the same 
way. Instead, climate change’s impact 
on human welfare is shaped by existing 
socioeconomic, demographic, and climatic 
conditions. Quantifying the impacts of 
climate change with an approach that 
accounts for these local differences makes it 
possible to estimate who is most vulnerable 
in today’s climate and in the future as 
climate conditions evolve. 

Chapter 1 - Introduction
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Purpose of the report
This report supports ongoing efforts 
by the California Air Resources Board 
(CARB) to better understand the impacts 
of greenhouse gas emissions on human 
welfare by introducing the Climate 
Vulnerability Metric (CVM). The CVM 
provides an aggregation of the quantifiable 
impacts of near-term climate change for 
each California census tract under moderate 
levels of projected global greenhouse gas 
emissions. It is the first metric in California 
specifically focused on quantifying the 
community-level impacts of a warming 
climate on human welfare.

As California invests in climate mitigation 
and adaptation, it is essential to understand 
the relative impact of climate change across 
communities. Identifying the difference in 
impacts across communities can be used 
to direct resources and avoid increasing 
inequities resulting from climate change. 
The CVM also provides information on 
the impact of reducing greenhouse gas 
emissions on California communities.  

The CVM is intended to augment California’s 
existing resources for understanding 
physical hazards by quantifying the impact 
of changing climate conditions on human 
welfare at the census tract level. While a 
handful of statewide mapping platforms 
are available for assessing vulnerability, 
no centralized set of indicators exists. This 
has made it very challenging to develop a 
comprehensive view of the communities 
that are most at risk.iii Policy experts have 
also suggested that relying on more local 
data—at the census tract—could provide 
the correct scale for analysis of climate

impacts on disadvantaged populations at 
the community level.iv The CVM is the first 
comprehensive tool to identify the impact 
of climate change on human welfare at the 
census tract or community level. 

The CVM considers projected impacts 
of climate change on human welfare 
across four categories, composed of nine 
components, through midcentury (2050). 
This time horizon has the benefit of 
capturing the collective effect of current and 
near-term global greenhouse gas emissions 
on California’s climate system. Driven by 
assumptions about currently available 
technologies and near-term political will, 
future climate conditions are modeled 
under a moderate emissions scenario (RCP 
4.53) that is consistent with the world’s 

Interpreting CVM results

CVM AT A GLANCE

Timing: The CVM is calculated through 
2050, or a midcentury time horizon. 

Emissions scenario: The CVM is based on 
an emissions scenario that is consistent 
with nations meeting their Paris Climate 
Agreement pledges. 

Output: The CVM is reported as a percentage 
of monetized impacts, a format that 
accounts for current economic inequalities 
across California and is intuitive to read. A 
higher CVM value in a census tract indicates 
more predicted damages.

3 Representative Concentration Pathway (RCP) 4.5, a moderate forcing path.
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countries meeting their current emissions 
reduction pledges under the Paris Climate 
Agreement. Under this scenario, carbon 
dioxide emissions stabilize close to their 
current levels through midcentury and 
decline after that, reflecting moderate 
mitigation action. 

In order to ensure that the CVM represents 
the diversity of California communities, 
the CVM is reported as the combined 
monetized impacts as a percentage of 
census tract-specific incomes. This format, 
a percentage, accounts for current levels of 
economic inequality4 across California and 
captures the impact of a warming climate 
on fundamental aspects of community 
well-being such as public health, housing, 
and our ability to earn a livelihood in a 
common format. The higher the CVM for a 
given census tract, the more damaging the 
projected impacts of climate change on 
human welfare. A lower CVM is associated 
with greater resilience, while a negative 
CVM value represents a projected beneficial 
impact.

The CVM captures the potential for climate 
change to exacerbate income-driven 
disparity. Notably, while the CVM is a 
monetized metric, it includes impacts on 
non-market outcomes, such as health risks 
and the discomfort of outdoor laborers. 
Included in the aggregate CVM for each 
census tract are four categories for which 
a robust body of evidence demonstrates 
the relationships between daily climate 
variables and human welfare impacts 
affecting California while accounting for 
differential vulnerability across the state 
(see Technical Appendix for citations and 

methodology). These are:
•	 the impact of daily temperature on 

all-cause mortality rates across three 
different age groups; 

•	 the impact of hourly temperature on 
household electricity and heating 
fuels consumption, and resulting 
changes in energy costs;

•	 the impact of daily temperature on 
the number of hours people work 
in both “high-risk” outdoor sectors 
(agriculture, mining, forestry, 
construction) and “low-risk” sectors 
(all other sectors); and 

•	 the impact of sea-level rise and 
changes in precipitation on flood-
related property and structural 
damage, both for coastal and inland 
properties.

The relative vulnerability of each census 
tract is quantified by:  

1.	 Summing monetized damages from 
climate change across all impact 
categories in each census tract; and

2.	 Reporting each census tract’s 
combined projected damages in 
2050 as a share of their current 
income (% of census tract-specific 
income in the present day, as 
obtained by the Censusv).

Importantly, the CVM calculation accounts 
for uncertainty in how the global climate 
responds to greenhouse gas emissions 
by simulating a range of future climate 
projections. For each census tract, the 
median outcome and the 25th and 75th 
percentiles are estimated, showing the 
spread of the middle half of the CVM 
distribution.5

4 Per capita income in 2019 for census tracts across California ranges from $633 to $176,388, with a median of 
$32,181 ($2019). Source: American Community Survey.

5 The 25th and 75th percentiles each have 1-in-4 odds.
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The CVM aims to capture socially 
and economically significant climate 
impacts that can be quantified in a 

manner that accounts for 
disproportionate impacts 
across diverse populations. 
California’s existing 
frameworks for assessing 
climate vulnerability offer 
a granular set of physical 
hazard indicators (e.g., 
extreme heat days, wildfire 
risk) overlayed with social 
vulnerability indicators 
(e.g., nutritional status, 
educational attainment) 
and particular forms of 
adaptive capacity (e.g., 
air conditioning) at the 
county or census tract 
level.vi In addition, there 
are visualization tools that 
identify the exposure of 

disaster response facilities or California 
residents to physical hazards such as coastal 
floodingvii and wildfires.viii

The CVM aims to 
capture socially 

and economically 
significant 

climate impacts 
that can be 

quantified in 
a manner that 

accounts for 
disproportionate 

impacts 
across diverse 

populations.

Defining vulnerability in this report.

Prior approaches to estimating climate 
vulnerability implicitly assume that 
social vulnerability indicators, such as 
lack of a high school diploma, indicate 
climate vulnerability. For instance, 
the approach used in the U.S. EPA’s 
recent assessment of climate change 
and social vulnerability assumes 
every human has the same uniform 
response to a given physical hazard, 
then estimates the likelihood that 
socially vulnerable humans live in 
those regions exposed to the highest 
physical hazards.ix This approach fails 
to incorporate the fact that individuals 
and communities differ in their capacity 
to respond to the same physical hazard. 
In contrast, the research underlying 
the CVM uncovers how populations 
respond and adapt to climate change 
through empirical estimation using 
large-scale, comprehensive data.x 

Throughout this report, we distinguish 
between “vulnerability,” which reflects 
this empirical measure of the varying 
ability to adapt and cope, and 
“exposure,” which does not reflect 
these differences and instead relies on 
static assumptions of uniform ability to 
respond and adapt to climate change.

Chapter 2 - Socially and Economically 
Significant Impacts of Climate Change
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While these frameworks can increase 
understanding of physical hazard 
projections at a local level, they do not 
quantify the impacts on human welfare. 
The CVM quantifies these impacts with an 
approach rooted in peer-reviewed literature 
that has recovered the factors influencing 
vulnerability. For example, recent climate 
economic research on human mortality 
finds that people in regions with lower 
incomes and older populations fare worse on 
extremely hot days than do younger people 
in wealthier locations.xi These disparities 
can be measured using socioeconomic and 
demographic data disaggregated to the 
census tract level to highlight the difference 
in climate vulnerabilities across the state.

The CVM takes a detailed approach that 
follows frontier advances in the scientific 
literature on climate impacts. In estimating 
climate impacts, the CVM allows varying 
responses to changing climate conditions 
based on differences between populations. 
For each category included in the CVM, a 
robust body of evidence demonstrates the 
relationships between climate conditions 
and socially or economically significant 
impacts in California. 

The impact of daily temperature on 
mortality risk has been widely studied 
globally, as well as in the United States and 
California. Extreme heat events have been 
shown to cause heat-related illnesses, like 
heat exhaustion or heat stroke. Heat stroke 
occurs when a person’s body temperature 
rises faster than it can cool itself down, 
causing damage to the brain and vital 
organs. This can be especially dangerous for 
older adults and young children.xii Similarly,

extreme cold raises mortality rates due 
to pneumonia, flu, and other illnesses 
triggered under cold conditions. Warming 
temperatures are projected to lead to 
an increase in heat-related deaths and a 
smaller decline in cold-related deaths in 
most regions of the U.S.xiii Importantly, 
vulnerability to these health risks has been 
documented to vary substantially across 
diverse populations, depending on many 
non-climate factors such as age, housing, 
and access to protective technology like air 
conditioning.xiv Recent research enables us 
to capture differential exposure to health-
threatening temperatures and to account 
for differences in the ability to adapt across 
communities in California. Prior research 
in the U.S. suggests that these mortality-
related impacts of warming may be the 
single most significant driver of human 
welfare losses under climate change over 
the next century.xv

Warmer temperatures are projected to 
raise Californian households’ electricity 
expenditures as demand for cooling 
steadily grows.xvi These higher energy bills 
will be particularly burdensome in regions 
of California where temperatures are 
already high enough to lead to pervasive air 
conditioning use. However, warmer winters 
also decrease the use of heating fuels, 
particularly in colder regions of the state.xvii 
This means that climate change will cause 
very different energy-related costs across 
the diverse regions of California. However, 
switching from heating to cooling will likely 
result in a net increase in  spending on 
energy bills for most households.xviii

Energy equity research suggests that

Human mortality

Household energy costs
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assessing the share of household income 
spent on energy may miss energy-limiting 
behavior in low-income households, such 
as keeping the thermostat set higher 
during periods of extreme heat to avoid an 
unaffordable increase in energy spending.xix

This hidden form of energy poverty means 
poorer households, including those who 
rely on less electricity-intensive cooling 
technology like swamp coolers and 
fans, are more exposed to higher indoor 
temperatures and associated health risks.  

More frequent and severe temperature 
extremes can cause people to spend less 
time working, as they spend more time 
indoors to beat the heat or take more 
frequent breaks during outdoor labor to 
cool off.xx This is especially relevant for the 
nearly one-in-four workers in the U.S. labor 
force who work in high-risk sectors like 
agriculture or construction.xxi Heat strain can 
also affect workers in low-risk sectors who 
spend their days in retail stores or offices.xxii 

When the temperature inside commercial 
buildings is uncomfortable for workers, 
their productivity and performance are 
negatively impacted.xxiii More frequent 
and severe temperature Workers who are 
elderly, overweight, or have high blood 
pressure or heart disease are at a greater risk 
of heat stress.xxiv To reduce exposure to heat, 
workers may choose to work fewer hours 
overall, work during a different time of day, 
or drop out of the labor force altogether.
xxv Emerging evidence on the link between 
temperature and the workforce enables a 
calculation of these impacts at the local

level across California.

Globally, sea levels have risen by 7 to 8 
inches since 1900—at a rate greater than 
during any similar period in at least the 
last 3,000 years—posing growing threats 
to coastal communities and economies.
xxvi Even a small amount of sea-level 
rise can harm coastal habitats through 
destructive erosion, wetland flooding, and 
soil contamination. As the California coast 
erodes and waters rise, so do the number 
of properties at risk of tidal flooding or 
inundation caused by offshore storms. In 
addition to increasing the risk of property 
damage along coastlines, climate change 
is increasing flood risk inland as warming 
increases the atmosphere’s capacity to 
store more water vapor, resulting in heavier 
rain and powerful storms.xxvii Flooding has 
disproportionately harmed urban areas 
with economically disadvantaged and 
minority populations.xxviii Low-income, 
Black, and Hispanic people are more likely to 
move into high-risk flood zones compared 
to homebuyers and renters who can afford 
to live in less exposed areas.xxix Additionally, 
rising flood insurance premiums may leave 
low-income households priced out of flood 
insurance, shifting the financial burden 
onto remaining ratepayers and putting 
others at greater risk of uninsured losses. 

Hours worked in both 
high-risk and low-risk 
sectors

Flood-related property 
damage
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Existing research on the human welfare 
impacts of climate change is limited in 
geographic granularity—some reports 
estimate impacts in 10 U.S. regions,xxx 
while others conduct state- or county-level 
climate damage estimates.xxxi However, 
even at the county level, environmental 
and socioeconomic conditions between 
communities may vary drastically (Figure 1). 
This means there are no existing estimates 
indicative of the lived experiences on the 
ground in highly impacted communities 
within California’s 58 counties. The CVM 
fills this gap, providing a geographically 
comprehensive and granular assessment 
that makes it possible to assess which

Gaps the CVM aims to fill communities face disproportionate 
impacts. 

There are also diverse physical climate 
hazards that impact specific California 
regions. Changes in the severity and 
frequency of winter storms in the Sierra 
Nevada mountains will impact human 
welfare in the region. More severe drought 
conditions and reduced water availability 
will impact communities in the Central 
Valley. While these impacts are part of the 
lived experience in these communities, 
there is no comprehensive statewide 
data on their impact on human welfare. 
Therefore, these regional impacts are not 
included in the CVM.

Paramount to developing the CVM is

Figure 1: Census tract-level data makes it possible to assess economic and demographic 
conditions at a localized scale that is obscured with county-level data.  The left panel of this 
figure shows 2019 county Gross Domestic Product (GDP) per capita as reported by the Bureau of 
Economic Analysis. The right panel shows the same dataset scaled to the census tract level using per 
capita income data from the American Community Survey. Income is a key factor in estimating how 
communities will respond to changing climate conditions.

CVM Report | 13
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assessing the relative vulnerability 
of Californians to climate impacts by 
exploring a full range of potential changes 
in temperature and precipitation at a daily, 
local level using methods that account for 
different responses across populations. 
For example, Long Beach and Fresno 
have roughly the same annual average 
temperature. But households in Fresno 
experience more cold days and hot days 
throughout the year, causing them to face 
higher energy bills for heating and cooling. 
Capturing this response to daily conditions, 
rather than annual averages or hazards 
(e.g., days above 95 degrees), also makes it 
possible to pick up on the effects of seasonal 
variation.

By capturing  the effects of the full 
distribution of daily weather events, 
we account for the fact that individuals 
experience their climate one day at a time 
and make decisions about their actions 
based on the daily events they experience. 
The method for quantifying climate impacts 
employed by the CVM relies on constructing

mathematical functions that describe the 
relationship between climate conditions 
that a population experiences and 
the corresponding response that the 
population shows in terms of social or 
economic outcomes. For more information 
on these functions, see Chapter 3.

Importantly, the CVM is focused on climate 
impacts that have documented human 
welfare impacts at the individual and 
household levels. Welfare encompasses 
market impacts that have an observable 
change in expenditures and non-market 
impacts whose value is measured in 
people’s perceived willingness to pay for an 
increased amount of risk (Figure 2). Some 
existing tools take a purely financial or 
economic assessment of climate impacts 
and focus on changes to a region’s economy 
rather than quantifying the impacts on 
human welfare.xxxii

Because the CVM is focused on climate 
change impacts (i.e., impacts caused by 
greenhouse gas emissions that alter the

CVM Report | 14

Figure 2: Breakdown of “market” vs. non-market impacts on human welfare. The CVM 
encompasses four categories of climate change impacts on human welfare, encompassing both 
market impacts that can be directly observed in markets via changes in prices or quantities of goods 
exchanged, and non-market impacts, whose value is measured in people’s willingness to pay for a 
decreased amount of climate risk. While working hours are observed in labor markets, the CVM uses 
the response of hours worked to changes in the climate to measure the discomfort workers face 
when working under extreme conditions. As this discomfort is not itself a market good, this impact 
category is indicated as “non-market”.

Category Market Non-market

Human mortality X

Hours worked in high- and low-risk sectors X

Household energy costs X

Flood related property damage X



global climate), it does not include any 
impacts related to changes in localized 
air pollutants. However, the CVM can be 
combined with other census tract level 
metrics for pollution burden and population 
vulnerability characteristics, including 
CalEnviroScreen, to provide a more 
comprehensive assessment of community 
vulnerability to environmental conditions.
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Chapter 3 - The Five Step 
Method For Calculating 
the CVM



Constructing the CVM as a single metric 
capturing the effects of climate change 
across impact categories and communities 
requires five main steps, beginning by 
quantifying the impacts of climate change 
on human welfare and ending with 
aggregating impacts across categories and 
reporting the CVM for each census tract in 
California as combined monetized impacts 
per capita as a percentage of census tract-
specific incomes. These steps result in the 
first census tract measure of the quantifiable 
impacts of climate change, combining both 
market and non-market impacts of climate 
change in monetized terms and accounting 
for differences in vulnerability across 
communities.

The first step in calculating a CVM is 
constructing dose-response functions, 
which describe the mathematical 
relationship between the “dose” of 
a particular climate condition that 
a population experiences and the 
corresponding “response” that the 
population or local economy shows in 
terms of key social or economic outcomes. 
The CVM takes a detailed approach that 
considers the full probabilistic distribution 
of climate sensitivity and allows varying 
responses to climate conditions based on

Chapter 3 - The Five-Step Method for 
Calculating the CVM

Step One: Create climate 
dose-response 
functions

differences between populations.

Following frontier advances in scientific 
literature on climate impacts,xxxiii the 
CVM shows that the impacts of changing 
climatic conditions on human welfare are 
not uniform and do not scale linearly with 
increased warming. Instead, those outcomes 
are shaped by existing socioeconomic 
and climate conditions, which vary across 
communities, and dose-response functions 
are highly nonlinear (Figure 3). Quantifying 
the impacts of climate change with an 
approach that accounts for these local 
differences and assesses daily climate 
conditions makes it possible to estimate 
who is most vulnerable in today’s climate 
and in the future as physical hazards evolve.

Primarily, the CVM relies on research 
that measures responses to a complete 
distribution of daily temperature or rainfall 
measures, rather than average conditions, 
to more accurately characterize how 
populations respond to local changes 
in those distributions. Using historical 
data on social and economic outcomes 
matched to historical climate data, dose-
response functions can relate future climate 
conditions to projected outcomes (Step 
Two, next page). When controlling for other 
factors, such as social services, average 
population health conditions, and trends 
in energy infrastructure, these statistical 
models can isolate the role of climate 
change in individual components of human 
welfare in historical data.xxxiv This approach 
ensures that future projections are based
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Figure 3: Dose-response functions for two components of the CVM. These figures show 
census tract-level dose-response functions for two example components of the CVM. Each dose-
response function shown in grey relates a key human welfare outcome (e.g., mortality rates) to daily 
average temperature. Select census tract dose-response functions are shown in colors to illustrate 
how vulnerability is influenced by long-run average climate conditions and by levels of income, 
among other factors. Panel A shows this dose-response relationship for changes in human mortality 
(deaths per 100,000 people) for populations over 65 with the teal line representing a lower-income 
tract, the pink line representing a median income tract, and the gold line representing a high-income 
tract. This shows that communities with higher incomes are far less vulnerable to the mortality 
risks of extreme heat than are communities with lower incomes. Panel B shows this dose-response 
relationship for changes in household electricity consumption (kWh) with the teal line representing 
a cooler census tract, the pink line representing a median climate census tract, and the gold line 
representing a hotter census tract. This shows that in hotter communities, increased penetration of 
air conditioning and other cooling technologies leads to larger electricity expenditures under higher 
temperatures than in cooler communities. In both panels, the grey lines represent dose-response 
functions for all 8,057 individual census tracts across California. 

A

B
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on the best available estimates of 
how populations and economies have 
responded to historical fluctuations in 
climate conditions.

Next, this set of category-specific dose-
response functions is applied to present-
day climate data and projected climate 
data for a midcentury time horizon.6 
Here, the “dose” of climate conditions a 
population is projected to experience in 
2020 and 2050 generates corresponding 
“responses” based on today’s population 
characteristics. The difference between 
today’s dose-response and the future 
dose-response represents the impacts of 
climate change. Current demographic data 
is used because long-term projections for 
population changes are highly uncertain 
and currently unavailable at the census tract 
level. Moreover, this approach ensures that 
the CVM reflects differential vulnerability 
as reflected in today’s populations without 
imposing additional assumptions about 
how the demographics or socioeconomics 
of individual locations may evolve in the 
future.

This approach to modeling future climate 
is consistent with the approach developed 
as part of the Intergovernmental Panel on 
Climate Change’s (IPCC) 5th Coupled Model 
Intercomparison Project, which compares

Step Two: Calculate the 
future impacts of climate 
change

6 “Present-day climate data” refers to the long-run average of 2010-2030 climate conditions, while the “midcentury 
time horizon” is based on projected conditions in 2040-2060. For simplicity, we refer to these time horizons as 
“2020” and “2050,” respectively.

data generated by climate modeling 
research programs around the globe. 
Through a computationally intensive 
process called “downscaling,” these climate 
model outputs are transformed, bridging 
the gap between large-scale climate 
change and local or regional effects. This 
makes the downscaled, local California 
climate projections employed by the CVM 
consistent with the best available scientific 
estimates of how temperature change will 
evolve over the next three decades (Figure 
4).

A moderate emissions scenario, RCP 4.5, is 
used to project future climate conditions. 
This scenario is consistent with the world’s 
countries meeting their current emissions 
reduction pledges under the Paris Climate 
Agreement. The CVM’s 2050 time horizon 
has the benefit of capturing the cumulative 
effect of current and near-term global 
greenhouse gas emissions on California’s 
climate system, driven by assumptions 
about currently available technologies 
and near-term political will. Under these 
parameters, the dose-response functions 
are used to quantify the effect of specific 
daily weather events on outcomes in 
each census tract. The results are annual 
impacts for the 2020 and 2050 time 
periods, expressed in physical units (e.g., 
mortality risk in units of deaths per 100,000 
population or electricity consumption in 
kilowatt-hours). The difference between 
these physical units from 2020 to 2050, 
or the sector-specific impact of climate 
change, is monetized in Step Three.
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Figure 4: The CVM is estimated using downscaled California climate projections that are 
consistent with the best available scientific assessments of how warming will evolve in 
the future.   This map shows the projected annual average change in temperature by midcentury 
under a moderate emissions scenario (RCP 4.5) relative to current annual average temperatures. 
The difference between each census tract’s response to future climate conditions (2040-2060) and 
current climate conditions (2010-2030) represents the projected impacts of climate change on 
human welfare in each category of the CVM. These values show median values across an ensemble 
of climate models that together account for uncertainty in projected warming (see Technical 
Appendix for details).
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These census tract impacts are then 
valued in dollars using a category-specific 
methodology that captures economic 
impacts and human welfare effects. For 
example, changes in mortality rates are 
valued in dollars using a widely used, well-
established federal measure of the value of 
statistical life.7 Expressing impacts across 
categories in the same unit (dollars) allows 
us to account for the magnitude of each 
category’s effect when summing across 
categories in later stages of the analysis 
(Step Four). 

This approach captures both economic 
impacts and the potentially substantial 
non-market impacts of climate change on 
communities across California. For instance, 
impacts of warming temperatures on the 
number of hours worked by laborers are 
represented as the monetized value of 
labor disutility—measuring the discomfort 
workers experience when laboring under 
extreme climate conditions. By doing so, 
the CVM accounts for important welfare 
components of communities’ vulnerability 
to climate change instead of only counting 
direct financial implications. 

Monetization relies on assumptions 
regarding how to value both market and 
non-market impacts. In some categories, 
this is straightforward (e.g., the total change 
in monthly energy bills). Other categories 
require a set of critical assumptions, 
described in the Technical Appendix, such

as computing labor disutility.

Converting climate change’s impact on 
sectors of the economy to dollar values, 
such as increases in energy expenditures 
or mortality risk, is a technique used 
throughout the economics literature as 
part of the research underlying estimates 
of the social cost of carbon (SCC) and other 
greenhouse gases. The SCC is defined as 
the total monetary value of the damages 
imposed by the release of one additional 
ton of carbon dioxide, and it is used to 
compare the costs of emissions mitigation 
policies against their benefits. Like the 
CVM, the SCC relies on converting impacts 
to dollar values in order to aggregate 
climate change impacts across impact 
categories. However, unlike the CVM, the 
SCC combines the monetized damages of 
climate change from regions around the 
world into a single global metric, obscuring 
localized information on how damages vary 
from place to place. The CVM is designed to 
capture this local variation in the costs of 
climate change within a single region, the 
state of California.  

While both are built from aggregations 
of category-specific estimates of climate 
change damages, the SCC and CVM differ in 
other important ways. For example, the CVM 
for each census tract is composed of near-
term (2050) combined projected damages 
from climate change along a path of global 
emissions (RCP4.5). The SCC, on the other 
hand, is computed as the present discounted 
value of the long-term combined projected 
damages caused by emitting one marginal 
ton of CO2, including damages  starting in 
the present and continuing centuries into 
the future through the year 2300).

7 For more details on the Value of Statistical Life, vetted and endorsed by the U.S. EPA since 2000, see the Technical 
Appendix methodology for estimating climate change’s impact on human mortality.

Step Three: Assign 
monetary value to each 
impact
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Step Four: Add up 
values of impacts across 
categories and divide 
by census tract population

Valuing the impacts in monetary terms 
(Step Three) across all CVM categories of 
climate impacts allows for summing across 
categories to estimate a combined total. 
These combined monetized impacts are 
then reported per capita as a share of census 
tract-specific incomes (percent), ensuring 
that impacts in wealthy, high-population 
census tracts do not dwarf impacts in low-
income, low-population census tracts by 
construction.

To implement this approach, total census 
tract monetized impacts are first divided 
by census tract populations to calculate 
monetized impacts per capita. This 
approach helps to normalize the CVM 
across various levels of the population in 
each of California’s census tracts, ranging 
from 1,200 to 8,000 people. Each census 
tract’s combined projected damages in 
2050 are then reported as a share of their 
current income (% of census tract-specific 
per-capita income in 2019). This format 
accounts for current levels of economic 
inequality,8 reflecting that the same dollar 
value of monetized impacts would be 
a more significant loss to a low-income 
household than a wealthy household. 

Notably, the calculation of combined 
monetized impacts in each census tract 
accounts for uncertainty in how the climate 
will respond to increased concentrations 
of greenhouse gases, known as “climate 
sensitivity.” Low-probability, high-impact 
climate change matters just as much, if 
not more, than those futures that are most 
likely to occur due to the greater risk of 
catastrophic impacts. An approach that 
ignores the probability of these catastrophic 
outcomes and focuses only on the average 
impact would fall short in assessing the 
vulnerability of California’s communities, 
leaving them unprepared for these low-
probability but costly impacts. 

Probabilistic future climate projections 
are used to construct estimates of the 
median, or 50th percentile, impact across 
climate uncertainty.xxxv We provide the 
median rather than the mean because it 
avoids overly representing any outliers and 
represents a CVM that is “as likely as not.” 
Additionally, the CVM includes estimates in 
each census tract of the monetized impacts 
under the less likely 75th percentile high 
impact future climates and 25th percentile 
low impact future climates, showing the 
spread of the middle half of the CVM 
distribution.9

8 Per capita income in 2019 for census tracts across California ranges from $633 to $176,388, with a median of 
$32,181 ($2019). Source: American Community Survey.

9 The 25th and 75th percentiles each have 1-in-4 odds.
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The final CVM is the first metric in California 
specifically focused on quantifying the 
community-level impacts of a warming 
climate on human welfare. The CVM 
quantifies how vulnerable each California 
community is to the impacts of climate 
change and makes it possible to assess 
which communities benefit most from 
efforts to mitigate climate change to avoid 
the range of impacts on human welfare.

As noted, the four categories of climate 
change impacts included in the CVM 
estimates were chosen because of the 
availability of robust methods and data to 
quantify outcomes at the census tract level 
across California. Importantly, categories 
were only selected if existing methods 
and data enabled characterization of 
an individual census tract’s differential 
vulnerability to the same climate hazard. 
Therefore, the impacts included in the CVM 
do not represent the total cost that climate 
change is likely to impose on individual and 
household welfare across California because 
some critical categories, such as the health 
effects of exposure to smoke from climate-
driven wildfires and income losses due to 
agricultural productivity declines, cannot 
be feasibly quantified at census tract scale 
with existing research (see Chapter 4 for 
more discussion). 

Step Five: Report per 
capita climate impacts as 
a share of census-tract 
incomes (%)
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Chapter 4 - Categories of CVM Climate 
Impacts
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Climate change affects the health, 
well-being, and economic security of 
Californians. These impacts are uneven and 
localized. The CVM improves understanding 
of how socioeconomic characteristics and 
physical climate conditions within each 
census tract interact to create climate 
change vulnerability and quantifies future 
impacts to each census tract across four 
categories. The CVM is built from methods 

and data, detailed below, 
that make it possible to 
account for the differential 
capacity of each census 
tract to respond to climate 
shocks and stresses when 
quantifying outcomes 
under climate change. By 
combining these projected 
category-specific impacts 
and reporting total impacts 
in a format that accounts 
for existing economic 
inequalities, the CVM can 

provide context on the magnitude of risks 
facing Californians with a statewide scope 
and community-level resolution.

To determine the categories included in the 
CVM, the first phase of this project involved 
surveying the existing academic literature 
for categories of climate impacts to human 
welfare that are significant and quantifiable 
at the community level across the state. 
The categories identified as possibly able to 
meet these criteria were: 

1.	 the impact of daily temperature 
on all-cause mortality rates across 
different age groups;

2.	 the impact of daily temperature on 
learning/educational attainment;

3.	 the impact of smoke exposure 
from climate-driven wildfires on 
morbidity;

4.	 the impact of daily temperature 
on household electricity and 
heating fuels consumption, and 
resulting changes in energy costs;

5.	 the impact of daily temperature 
on the number of hours people 
work, especially in “high-risk” 
outdoor sectors;

6.	 the impact of daily temperature and 
precipitation on agricultural crop 
yields, and resulting changes in food 
supply;

7.	 the impact of sea-level rise on 
expected future coastal flood-
related property damage;

8.	 the impact of changes in 
precipitation on expected future 
inland flood-related property 
damage; and

9.	 the impact of climate-driven wildfire 
burn risk on property damage.

From there, the scope was narrowed to 
categories that can be measured, based 
on existing scientific research, in a way 
that accounts for differential vulnerability 
to climate conditions. For example, a 
heat wave’s effect on health at the census 
tract level depends on the existing socio-
demographic characteristics of that census

The CVM 
can provide 

context on the 
magnitude of 

risks facing 
Californians with 

a statewide scope 
and community-
level resolution. 



tract—geographic location, starting 
temperature, and income—not just the 
intensity of the heat wave. Those categories 
fitting the criteria are in bold above. 
For other (non-bolded) categories, prior 
research indicates that climate change is 
likely to have important consequences, 
but there is insufficient research available 
to characterize climate vulnerability and 
change impacts at a census tract level.

Below, the methodology for estimating 
impacts in each category is overviewed. 
More detailed methods can be found in the 
Technical Appendix. 

Hot and cold temperatures are deadly, 
with heat waves and cold spells worsening 
underlying conditions. Those most 
vulnerable during periods of extreme 
temperatures are people who have pre-
existing respiratory and cardiovascular 
conditions, like high blood pressure, 
asthma, or lung problems. Climate warming 
is anticipated to bring a reduction in cold-
related mortality, but an increase in heat-
related mortality. Excessively hot nights have 
been shown to interrupt sleep, leading to 
immune system damage and a higher risk of 
chronic disease. Heat places the body under 
a lot of stress and is particularly dangerous 
to very young children, those over 65, 
people experiencing homelessness, and 
those who cannot afford air conditioning. 

The risks that extreme temperatures pose 
to human health are often misreported, 

since individual deaths are rarely attributed 
to temperature surges. Therefore, public 
health officials and policymakers have 
historically had insufficient information 
about the mortality risks of climate change. 
The level of vulnerability of populations to 
the emerging heat stress brought about 
by climate warming will depend on the 
severity of the temperature extremes, 
the age distribution of the underlying 
population, and on society’s adaptive 
response, all of which must be measured 
at a very local scale. To account for the 
many investments and behaviors that 
compose society’s adaptive response, we 
empirically estimate how different climates 
and different incomes, which are proxies for 
adaptive investments like air conditioning 
penetration and emergency preparedness, 
translate into differential vulnerability 
to weather shocks in historical data. For 
example, people living in temperate 
climates (e.g., the San Francisco Bay Area) 
do not have the technologies, institutions, 
or behavioral patterns that enable them 
to cope well with extreme heat, while 
populations living in hot climates (e.g., the 
Central Valley) are better prepared for heat 
wave events.

Historical estimates of the mortality-
temperature relationship across locations 
can help shed light on whether resilience 
measures can mitigate the risk of heat-
related mortality. Studying the potential 
effects of future climate change on both 
heat-related and cold-related mortality 
can help the public health community in 
California assess where risks will be the 
most severe and mobilize resources in local 
communities to improve resilience.

The CVM analysis of the mortality impacts 
of climate change across California relies on 
estimates from Carleton et al. (2022)xxxvi in

Impact of daily temperature 
on all-cause mortality 
rates across different age 
groups
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combination with data collection and 
methods adaptations that are specific to 
the state of California. Specifically, the CVM 
uses the empirical estimates in Carleton et 
al. along with data on demographic and 
income information from the Census to 
calculate climate change’s effect on future 
age-specific, all-cause mortality rates across 
the state.

Carleton et al. provides a globally 
representative assessment of mortality 
impacts of climate change, econometrically 
estimating the effects that extreme cold 
and extreme heat have on death rates 
separately for each of three age groups (<5, 
5-64, >64). The analysis uses comprehensive 
historical mortality records from the largest 
sub-national vital statistics database in the 
world, detailing 232.9 million deaths across 
40 countries accounting for 38 percent of the 
global population, combined with decades 
of detailed daily and local temperature 
observations, which account for both 
daytime and nighttime temperatures. The 
authors find a U-shaped relationship in 
which both extreme heat and cold increase 
mortality rates, particularly for those over 
the age of 64. A single hot day (35C/95F) 
increases annual mortality rates by 4 deaths 
per 1 million people relative to a moderate 
(20C/68F) day, while cold days (-5C/23F) 
increase the annual mortality rate by 3 
deaths per 1 million people. 

However, Carleton et al. shows that these 
relationships are strongly modified by the 
climate and income levels of the affected 
population, demonstrating that adaptation 
decisions have an important influence over 
the sensitivity of a population to extreme 
temperatures. This leads to substantial 
differences in climate vulnerability between 
places, depending on how wealthy the 
population is and how warm the average

climate is. This modeling of differential 
vulnerability enables us to use these 
estimates, in combination with custom 
climate, demographics and socioeconomic 
data collection for California, to characterize 
the differential effects of climate change on 
communities across the state.

To calculate mortality impacts in the CVM, 
these empirical mortality-temperature 
relationships are used to generate 
projections of the future impacts of climate 
change on mortality rates at the census tract 
level. The CVM analysis based on Carleton 
et al. proceeds in four steps:

1.	 Collect and harmonize 
socioeconomic and demographic 
data for all census tracts in 
California. Since the model in 
Carleton et al. shows that income, 
average climate, and demographics 
shape the dose-response function 
for mortality, the CVM analysis 
needs measures of these variables at 
the census tract level to determine 
the community-level vulnerability 
of mortality risk to heat and cold. 
Furthermore, the variables used 
at the census tract level must be 
defined in the same way as those 
used to estimate the response 
functions in Carleton et al., or a 
close proxy. For example, GDP 
(Gross Domestic Product) per capita 
is the measure of income used by 
Carleton et al. However, the highest 
attainable resolution of this measure 
is provided at the county level.
xxxvii Given the CVM aims to capture 
income differences within a county, 
per capita income, a close proxy to 
GDP,xxxviii is used at the census tract 
level.xxxix Per capita income is then 
scaled to the tract level using the
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county-level GDP per capita 
data. Other series are more 
straightforward to recreate at the 
census tract level. Census tract level 
population countsxl in 5-year bins 
construct the 0-4, 5-64, and 65+ 
age groups needed to estimate the 
age-specific response functions in 
Carleton et al. (2022). Census tract 
level long-run climate variables are 
constructed by taking a population-
weighted 30-year Bartlett kernel 
of daily average temperatures, 
following Carleton et al. (2022).xli

2.	 Construct census tract-level dose-
response functions. Each tract-
level dose-response function shows 
a community’s unique relationship 
between age-specific mortality 
rates and daily temperature 
(precipitation is used as a control 
in Carleton et al. but is not shown 
to be a quantitatively important 
driver of mortality). This analysis 
uses regression coefficients directly 
from Carleton et al. and uses data 
on the average GDP per capita and 
average long-run climate for each 
census tract as described above to 
construct tract-level dose-response 
functions.

3.	 Project future changes in   
mortality rates due to climate 
change. Dose-response functions 
from Step Two are then combined

with a set of 32 climate model 
projections10 to generate a 
probabilistic set of projected 
impacts of climate change on 
mortality rates at tract level.xlii These 
estimates correspond to the year 
2050 and emissions follow the RCP 
4.5 scenario. 

4.	 Monetize mortality risk changes. 
Projected impacts of climate 
change on mortality rates are then 
monetized to determine the costs 
of excess mortality risk in 2050. 
This monetization uses the U.S. EPA 
value of a statistical life (VSL).11 EPA 
takes an approach to estimating 
the VSL that has been vetted and 
endorsed by the agency since 2000 
(see Technical Appendix for further 
detail).

Energy for cooling and heating plays a 
crucial role in the ability of Californians to 
cope with extreme temperatures. Demand 
for heating and cooling fluctuates hourly, 
daily, and seasonally in response to outdoor

10 We use a set of 21 high-resolution, bias-corrected global climate projections that provide daily temperature and 
precipitation to the year 2099 from the NASA Earth Exchange (NEX) Global Daily Downscaled Projections (GDDP). 
As this set of 21 climate models systematically underestimates tail risks of future climate change, we assign 
probabilistic weights to climate projections and use 11 surrogate models that describe local climate outcomes in 
the tails of the climate-sensitivity distribution.

11 The VSL used in the CVM is of $10.95 million, which is from the 2012 U.S. EPA Regulatory Impact Analysis (RIA) 
for the Clean Power Plan Final Rule. This RIA provides a 2020 income-adjusted VSL in 2011 USD, which we convert 
to 2019 USD.
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ambient temperatures. How people alter 
their energy use in response to heat waves 
and cold spells is shaped by access to 
technology, such as heaters, fans, and air 
conditioning units. Californians also make 
decisions about their energy use based on 
what they can afford to budget for energy 
bills. In other words, the relationship 
between temperature and energy use looks 
very different depending upon household 
income and on the average climate 
conditions.

Hotter temperatures will increase the 
demand for residential and commercial air 
-conditioning powered by electricity. As the 
climate warms gradually, air conditioning 
will become increasingly critical in more 
temperate areas of the state, such as the Bay 
Area. At the same time, in colder climates, 
warmer winter temperatures as a result of 
climate change will reduce the demand for 
heating fueled by natural gas.

The CVM relies on estimates from 
Auffhammer (2022)xliii to analyze how 
changing climate conditions will impact 
household energy expenditures at the 
census tract level. Auffhammer uses two 
independent sets of proprietary household 
billing data at the zip code level across 
California to measure household-level 
expenditures on both electricity (used 
for heating and cooling) and natural gas 
(primarily used for heating). This analysis 
links energy expenditures from nearly 2 
billion energy bills to daily temperatures 
in a regression analysis that models 
differential vulnerability to heat and cold 
events based on household income and 
average climate conditions. As such, it 
represents the highest resolution and 
most comprehensive assessment of energy 
consumption responses to climate change 
in California, while also capturing

differential vulnerability to weather events 
at zip code level.

For the CVM, a set of results from 
Auffhammer’s analysis is adapted to (a) 
estimate impacts at census tract level, as 
opposed to zip code level; and (b) estimate 
impacts for all tracts in California, as 
opposed to only the subset of zip codes for 
which billing data were available. Because 
multiple modifications of Auffhammer’s 
analysis are required to meet these two 
goals and to ensure consistency with the 
rest of the CVM, some components of this 
method are under development and are 
noted as such below.

In our analysis, electricity and natural gas 
are modeled independently, as they are in 
the original publication by Auffhammer. 
Expenditures on electricity and expenditures 
on natural gas are likely to respond very 
differently to climate 
change, impacting 
different communities 
unevenly, given highly 
heterogeneous baseline 
climates, incomes, and 
demands for heating 
and cooling. However, 
because our process for 
adapting results from 
Auffhammer’s work to 
the CVM is similar across 
these two outcomes, 
we describe our methodology for both 
electricity and natural gas jointly.

The CVM analysis based on Auffhammer 
(2022) proceeds in four steps:

Expenditures on 
electricity and 
expenditures on 
natural gas are 
likely to respond 
very differently 
to climate 
change.
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socioeconomic, energy 
expenditure, and climate data   
for all census tracts in California. 



1.	 Auffhammer’s analysis shows that 
income and average climate shape 
the dose-response function for 
both electricity and natural gas 
expenditures. Therefore, measures 
of these variables at census tract 
level are used to determine the 
community-level vulnerability of 
energy expenditures to both heat 
and cold. For income, the same 
household income seriesxliv from 
Auffhammer’s analysis is used but 
at the higher resolution census tract 
level. For climate data, Auffhammer 
uses the PRISM climate dataset. 
In this analysis, PRISM is used to 
construct climate variables at the 
census tract level, matching the 
definitions used in Auffhammer 
precisely.

2.	 Construct census tract-level dose-
response functions. Each tract-
level dose-response function shows 
a community’s unique relationship 
between the level of household 
electricity consumption (kWh) and 
daily temperature, as well as between 
the level of household natural gas 
consumption (therms) and daily 
temperature (precipitation is used 
as a control in Auffhammer’s work 
but is shown to not be quantitatively 
important). This analysis uses 
regression coefficients directly from 
Auffhammer’s estimates of average 
income per capita and average long-
run climate for each census tract as 
described above to construct tract-
level dose-response functions.

3.	 Project changes  in future      
electricity and natural gas 
expenditures due to climate 
change. Dose-response functions

	 from Step Two are then combined 
with a set of 32 climate model 
projections to generate a 
probabilistic set of projected 
impacts of climate change on 
energy consumption at tract level.
xlv These estimates correspond to 
the year 2050 and emissions follow 
the RCP 4.5 scenario.

4.	 Monetize changes in electricity 
and natural gas consumption. To 
translate those impacts into absolute 
changes in expenditures, we use 
2020 state-level average residential 
prices from the Energy Information 
Administration (EIA) to convert into 
dollars.12 For consistency with other 
categories, we converted the 2020 
EIA values to $2019.
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12 Specific EIA data used to estimate energy costs can be found in the Technical Appendix.

Impact of daily temperature 
on the number of hours people 
work, in both “high-risk” 
outdoor sectors and “low-risk” 
sectors 
Rising average temperatures will make 
it harder to sustain optimal working 
conditions for outdoor and indoor labor. 
Higher temperatures can change the 
amount of time allocated to various types 
of work as individuals spend more time 
indoors to beat the heat, or as outdoor 
laborers take more frequent breaks to cool 
off. Climate-related factors can also affect 
worker performance, affecting cognitive 
capacity and endurance. Increased use of 



air conditioning for indoor labor and 
schedule changes for outdoor labor can 
mitigate some, but not all, of the effects.

Not all workers will be equally affected as 
the impact of climate differs across sectors 
of the economy. Workers in agriculture, 
construction, utilities, and manufacturing 
are among the most exposed. Workers in 
these “high-risk” sectors are at particular 
risk of heat stress because of the internal 
body heat produced during physical labor. 
Extreme heat stress, brought on by more 
intense or extended days of exposure to high 
temperatures, can induce heat exhaustion 
or heat stroke and can significantly reduce 
ability to carry out daily tasks. According 
to Center for Disease Control records, from 
1992–2006 there were 423 worker deaths 
attributed to heat exposure in the US, nearly 
a quarter from the agriculture, forestry, 
fishing, and hunting industries.xlvi

Higher temperatures and heat strain, 
however, can also impact workers in stores 
and offices as well. Thermal conditions inside 
commercial buildings are often not well-
controlled and can vary considerably over 
time as outdoor conditions change, making 
it difficult to ensure optimum temperatures 
for worker comfort and safety.

The CVM analysis of the labor impacts of 
climate change across California relies on 
the estimates from Rode et al. (in prep)xlvii 

to calculate climate change’s effect on the 
number of hours that people work. Rode 
et al. provides a globally representative 
assessment of labor force impacts of 
climate change, systematically evaluating 
the nonlinear response of labor supply to 
daily temperature separately for workers 
in “high-risk” sectors (i.e., weather-exposed 
sectors—agriculture, mining, construction, 
and manufacturing) and “low-risk” sectors

(all others). The analysis uses daily and 
weekly worker-level labor supply data from 
time use and labor force surveys in seven 
countries (USA, Mexico, Brazil, France, UK, 
Spain, and India), combined with decades 
of detailed daily and local temperature 
observations.

To calculate labor impacts in the CVM, we 
use these sector-specific labor supply-
temperature responses to generate 
projections of the future impacts of climate 
change on the number of hours people 
work at the census tract level (see Figure 5).

The CVM analysis based on Rode et al. 
proceeds in four steps:

1.	 Collect and harmonize sectoral 
employment data for all census 
tracts in California. Since the model 
in Rode et al. shows that the sector 
of employment shapes the dose-
response function for labor supply 
for the working age population, the 
CVM analysis needs a measure of the 
share of the workforce employed 
in high-risk versus low-risk work 
for each census tract. Specifically, 
census tract data on civilian 
population employment by industry 
and occupation following the sector 
definitions in the analysis by Rode 
et al., is used to create counts of 
high-risk and low-risk workers in 
each census tract.xlviii Individuals in 
the agriculture, forestry, fishing and 
hunting, and mining; construction; 
manufacturing; and transportation 
and warehousing, and utilities 
sectors are considered high-
risk workers while all others are 
categorized as low-risk. 
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Figure 5: The dose-response relationships between daily maximum temperature and 
hours worked in high-risk and low-risk sectors. This figure shows the sector-specific temperature 
dose-response functions quantifying how minutes worked per day by laborers changes with daily 
maximum temperatures. These dose-response functions are used to generate projections of the 
future impacts on climate change on the number of hours people work. Individuals working in jobs 
in weather-exposed sectors including agriculture, construction, utilities, and manufacturing are 
designated “high risk” and the relationship between work time and daily maximum temperature 
for these workers is represented by the magenta line. All other jobs are designated “low risk” and 
the relationship between work time in these sectors and daily maximum temperature is represented 
by the teal line. The plot shows that workers in “high risk” sectors are much more sensitive to both 
extremely hot and extremely cold days than workers in “low risk” sectors. 

2.	 Construct dose-response 
functions. Each dose-response 
function shows a community’s 
relationship between labor supply 
for the working age population 
and daily maximum temperature 
(precipitation is used as a control 
in Rode et al., but not shown to 
be quantitatively important). This 
analysis uses regression coefficients 
directly from Rode et al. and

1.	 estimates of workforce composition 
across high- and low-risk sectors 
as described above to construct 
dose-response functions. Following 
Rode et al., the two dose-response 
functions—a high-risk and a 
low-risk response function—are 
shared across all census tracts, 
but workforce composition across 
these two employment sectors is 
accounted for at the tract level.
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3.	 Project future labor supply under 
climate change.   Dose-response 
functions from Step Two are then 
combined with a set of 32 climate 
model projections to generate a 
probabilistic set of projected impacts 
of climate change on labor supply at 
tract level, accounting for differences 
in workforce composition and 
climate across census tracts. These 
estimates correspond to the year 
2050 and emissions will follow the 
RCP 4.5 scenario.

4.	 Monetize welfare effects of labor 
supply changes. Projected impacts 
of climate change on labor supply 
are then monetized to determine 
the welfare costs of excess heat 
to laborers in 2050. Specifically, a 
simple labor market model is used 
to translate minutes of labor supply 
lost into a measure of the monetary 
value of the disutility of working 
under extreme climate conditions. 
To implement this, the CVM analysis 
follows Rode et al. by multiplying 
the time lost due to climate change 
by the wage rate and by the Frisch 
elasticity of labor supply, a coefficient 
that describes how workers alter 
their labor supply when the wage 
rate changes.xlix The wage rate used 
is census tract specific.l

Flood risk is increasing in the state of 
California. Higher average sea levels due to 

Impact of climate change on 
expected future coastal and 
inland flood-related property 
damage

climate change are leading to elevated risk 
of tidal flooding and higher storm surges in 
coastal communities. Inland communities 
also see increased risk of flooding, with 
climate change altering precipitation 
patterns. Wet Pacific storm patterns bring 
heavy rain that can trigger debris flows 
and property damage. In particular, plumes 
of moisture known as atmospheric rivers, 
notorious for deluges of rain, are increasing 
in frequency and intensity as heat increases 
the atmosphere’s capacity to hold moisture.

Our analysis of the flooding impacts of 
climate change across California relies on the 
estimates from the First Street Foundation 
(FSF) Flood Model (FSF-FM).li,lii The FSF-FM 
finds that over the next 30 years, the number 
of properties with the risk of flooding will 
increase by 5.5%, bringing the total number 
of properties with substantial risk to more 
than 1.15 million compared to 1.09 million 
properties currently.liii Central Valley cities, 
including Sacramento, see riverine and 
stormwater flood risk in FSF’s modeling, as 
the dams and levees designed to protect 
the city often fail, and drainage issues cause 
flooding in some areas during storms.liv 

FSF’s data also shows that 20% of properties 
in the city of Los Angeles are at some risk of 
flooding, while 100% of properties in Yuba 
City are at risk of flooding.lv

The FSF property-level flood damage 
estimates are developed in Armal et al. 
(2020)lvi and Porter (2021).lvii Unlike other 
categories in which we calculated census 
tract level impacts, monetized data was 
provided at this aggregation. Below, we 
overview their methodology for estimating 
flood hazards under climate change and 
their methodology for estimating annual 
average monetary losses due to flood 
hazards. FSF-FM estimates property and 
structural damage from coastal flooding
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due to storm surge and tides and from inland 
flooding due to overtopping of riverbeds 
(fluvial flooding) and rainfall (pluvial 
flooding), taking into account adaptive 
measures such as levees, and incorporating 
changing rainfall and tropical cyclones, 
as well as rising sea levels due to climate 
change in the future. Damage estimates 
from flooding depend on information about 
aggregate flood depths from each of these 
physical hazards and on estimates of the 
damage incurred at different flood depths.

Flood hazard data

Flood depth hazard data for the RCP 4.5 
moderate emissions scenario is from the 
First Street Foundation (FSF) FloodFactor 
database, which relies on the FSF-FM. 
This dataset represents a joint modeling 
effort between FSF, Rhodium Group, 
Fathom Global, and WindRiskTech and is 
documented in Bates et al. (2020)lviii and FSF-
FM Technical Documentationlix and is briefly 
described here. Changes in future climate 
are derived from the IPCC’s 5th Coupled 
Model Intercomparison Project (CMIP5) 
global climate models under emissions 
pathway RCP 4.5, and from the Global Daily 
Downscaled Projections from NASA Earth 
Exchange (NASA/NEX-GDDP; Thrasher et 
al. (2012)lx statistically bias corrected and 
downscaled CMIP5 global climate models 
under RCP 4.5).13 The flood depth modeling 
approach incorporates the following 
additional methods and data sources:

1.	 Changes in tropical cyclone activity 
(including associated rainfall and 
wind fields) from WindRiskTech, 
methodology published in Emanuel

1.	 (2021),lxi and based on climate 
change from CMIP5 global climate 
models;

2.	 Changes in tropical cyclone 
precipitation fields modeled 
by Rhodium Group using 
WindRiskTech’s changes in tropical 
cyclones and rain field model;lxii

3.	 Changes in water levels from storm 
surge modeled by a modified 
version of GeoCLAWlxiii operated by 
the Rhodium Group;lxiv and

4.	 Changes in river overtopping 
(otherwise known as “riverine” or 
“fluvial flooding”) and rain-caused 
(otherwise known as “pluvial”) 
flooding due to changes in CMIP5 
precipitation patterns, modeled by 
Fathom Global.lxv

Damage data

For each return period frequency and time 
period in the flood hazard data set described 
above, FSF estimated losses based on depth-
damage functions compiled and estimated 
from several sources. These include the 
publicly available Hazus-MH Flood Modellxvi 
and internal FSF estimates based on 
historical National Flood Insurance Program 
claims data from Armal et al. (2020)lxvii and 
Porter (2021).lxviii These depth-damage 
functions distinguish vulnerability based 
on a number of structure characteristics 
and were applied at the structure level, 
using building exposure data compiled 
from Hazus-MH, Attom, and other sources. 
Building values were estimated using the 
FSF Automated Valuation Model (AVM) (see 
Armal et al. 2020, Porter 2021). The per-
structure losses for each return period

13 This makes the flooding category impacts completely consistent with the global climate model projections 
used in all other categories.



frequency were then interpolated into an 
extreme value distribution, resampled to 
estimate average annual losses (AAL), and 
aggregated to California census tracts for 
incorporation into the CVM.

The categories of impacts included in 
the CVM do not represent the total cost 
that climate change is likely to impose 
on individual and household welfare 
across California, because some important 
categories cannot be feasibly quantified at 
the census tract level across the state with 
existing research. Unquantified climate 
impacts have material impacts on California’s 
communities and may vary across regions 
and communities, highlighting the need for 
new analyses to identify their local impact.

Outreach to environmental justice 
advocates and community groups has 
highlighted physical climate damages that 
are not included in the CVM but represent 
material impacts to the lived experience 
of California communities. Specifically, the 
CVM does not capture any impacts related 
to: 

•	 water scarcity or drought; 
•	 winter storm activity; 
•	 wildfire activity or smoke exposure; 
•	 urban heat islands; 
•	 ozone increases associated with 

increased temperatures;  
•	 food scarcity; and
•	 Tribal land impacts.

We acknowledge that these unquantified 
impacts could alter the CVM’s magnitude 
and the distribution of impacts to human 
welfare across the state. For instance, 
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wildfire activity and smoke could affect 
the number of hours worked, mortality, 
and electricity used for indoor air purifiers 
and air conditioners. Urban heat islands—
metropolitan areas that are hotter than 
surrounding rural areas due to less tree 
cover and impervious dark surfaces, such 
as parking lots and roads that radiate 
more heat—could prevent water from 
soaking into the ground during storm 
events, leading to more inland flooding. 
While this list of unquantified impacts is 
not exhaustive, additional research will be 
needed to identify their differential impact 
on California’s diverse communities.

The CVM is also limited by geographic 
resolution. While identified physical climate 
damages at the census tract level is a 
research advancement, it may obfuscate 
the differential impact to communities 
with vastly different socio-demographic 
characteristics that are located within the 
same census tract. Continuing to increase 
the geographic granularity of climate 
impact research and data will only improve 
the understanding of how climate change 
impacts local communities. In addition, the 
geographic footprint of census tracts can 
be quite large in rural areas, where census 
block-level information may provide more 
meaningful, real-world assessment of 
climate impacts. The CVM is also limited by 
the availability of socioeconomic data even 
on geographies of similar scale to census 
tracts, resulting in a gap in understanding 
of the impacts of climate change on human 
welfare within the many Tribal communities 
in California. Additional research and data 
are needed to ensure that every California 
community is appropriately represented, 
especially historically underserved 
communities.

Finally, there are impacts that may be

Limitations of the CVM



significant to specific geographic regions—
including the impact of changes in 
water quality on fishing in Indigenous 
communities—that have not yet been 
scientifically evaluated at scale across the 
state of California. As climate economics 
research continues to mature, the CVM 
can be expanded to include additional 
categories and improve the coverage and 
granularity of communities, offering a more 
comprehensive assessment of vulnerability.
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Chapter 5 - Results and 
Conclusions



The CVM’s goal is to quantify the costs 
of climate change on society in terms of 
human welfare, making it possible to assess 
the magnitude of damage to California’s 
communities and the relative vulnerability 
of each census tract. This chapter presents 
a summary of the statewide results from 
each category of climate change impacts 
analyzed, and a summary of CVM findings, 
concluding with recommendations for 
application of the CVM and future research 
priorities to expand the scope of the metric.

Figure 6 shows census tract level maps 
of the median estimated annual effects 
of climate change in 2050 for each of the 
components of the CVM under a moderate 
emissions scenario. Overall, mortality risk is 
likely to be the dominant factor in the CVM, 
given that the impacts of climate change on 
death rates are more damaging to human 
welfare (panel A) than the effects in other 
categories (panels B-F). Human mortality 
risk is projected to increase the most in the 
San Francisco Bay Area, in the greater Los 
Angeles area, and throughout the Central 
Valley and southeastern regions of the state. 
Some colder regions at higher elevations 
are projected to experience reductions in 
mortality risk due to climate change, as the 
frequency of extreme cold declines.

Looking across the categories of climate

change impacts in Figure 6, it becomes 
clear that vulnerability to climate change 
is closely tied to the 
climate, demographic, 
and socioeconomic 
conditions in each census 
tract. In other words, 
drivers of vulnerability are 
category-specific and can 
differ substantially across 
categories of climate 
change impacts.

Human mortality impacts 
of climate change, the most 
significant category of CVM by magnitude, 
are strongly associated with census tract-
level demographics. Because the dose-
response functions in this category show 
older individuals are more susceptible 
to heat stress, in part due to the higher 
prevalence of pre-existing conditions 
relative to other age groups, census tracts 
with a greater share of the population aged 
65 and up are estimated to have higher 
CVMs on average. Figure 7 demonstrates 
that tract-level climate change impacts are 
strongly tied to the proportion of the census 
tract’s population that is over 64 years of 
age. While children under age 5 are also 
more vulnerable to heat, they make up a 
small share of California’s overall population 
and therefore do not drive overall human 
mortality impacts. The income level14 of a 
tract also influences the human mortality 
dose-response functions, with wealthier 
areas estimated to have greater adaptive 
capacity to extreme heat.

Effects across key categories 
of climate change’s impact on 
human welfare 
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Chapter 5 - Results and Conclusions

Drivers of 
vulnerability are 
category-specific 
and can differ 
substantially 
across categories 
of climate change 
impacts.

14 Measured in Gross Domestic Product (GDP) per capita.



Figure 6: Climate change impacts on human welfare that are considered in the Climate 
Vulnerability Metric. Maps show median estimates of the annual effects of climate change in 
2050 under a moderate emissions scenario (RCP 4.5) for all categories composing the CVM. Units 
vary across impact categories. For example, impacts of climate change are reported for mortality 
as a change in annual deaths per 100,000, while impacts for natural gas consumption are reported 
as a change in household annual expenditure on natural gas. The maps show spatial variation of 
vulnerability to climate change across census tract and category, which is driven by differences in 
climate, demographic, and socioeconomic conditions. In all maps, shades of orange and red indicate 
detrimental outcomes due to climate change (e.g. higher mortality risk, lower hours worked), 
whereas shades of blue indicate beneficial outcomes. Detrimental impacts are visible across the 
majority of the state for all categories except natural gas consumption, as consumption of heating 
fuels is decreased due to climate change. Other exceptions to this are regions of decreased mortality 
risk in northern and northeastern California and increased hours worked along the coastline for 
high-risk sectors.
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However, within California, census tracts 
with relatively older census populations 
tend to be relatively wealthier. This implies 
that overall, lower-income tracts have 
lower adaptive capacity to extreme heat 
but are not necessarily more vulnerable 
to the human mortality impacts because 
they tend to be younger. to extreme heat 
but are not necessarily more vulnerable to 
the human mortality impacts because they 
tend to be younger. 

Figure 8 shows analogous results to 
Figure 7, but for hours worked, electricity 
expenditures, and natural gas expenditures. 
Figure 8, panel A shows that for hours 
worked (which is used to estimate the 
discomfort workers face while working 
under extreme conditions), census 
tract vulnerability to climate change is 
associated with workforce composition. 
Specifically, vulnerability is highest where 
the proportion of the workforce that is 
employed in high-exposure sectors, such 
as agriculture and forestry, is also highest. 
In tracts where most of the workforce is 
protected from the elements, risks of climate 
change to worker discomfort are low and 
indistinguishable from zero. As seen in 
Figure 6, average climate is also important 
for projected impacts on hours worked, as 
many coastal regions are not projected to 
reach temperatures sufficiently high to lead 
to lost working time.

In Figure 8, panels B and C show that for 
electricity and natural gas, today’s climate 
conditions are strong determinants of 
vulnerability to future climate change. 
Locations that are hot and getting hotter 
face the largest projected impacts on 
electricity expenditures, while locations 
that are cold and getting warmer benefit 
the most from savings on their natural gas 
bills. Income is also a factor for these
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categories, as wealthier individuals 
tend to be able to afford cooling and 
heating services and therefore see larger 
expenditure responses to temperature. 
However, when we account for the fact 
that energy is a small share of a wealthy 
household’s income by measuring impacts 
as a percent of tract-level income, we see that 
climate is a more important determinant 
of vulnerability. Flooding damages across 
California are heavily concentrated in a 
small proportion of census tracts. Most 
tracts have close to $0 estimated change 
in annual average losses driven by sea-
level rise and changes in precipitation. 
Vulnerability in this category is in part 
determined by individual and community-
level investment in infrastructure, such as 
sea walls, levees, pump stations, and tide 
gates, that are shown to make a property 
less exposed to potential flood damage. 
These structures, as well as adaptation 
projects (i.e., beach nourishment, coral 
and oyster reefs, property buyouts) are 
accounted for in the model used to estimate 
this category of impacts. Thus, properties 
that have not invested in these adaptation 
strategies are more vulnerable to climate 
change’s impact on property damage. 
Overall, the correlation of census tract 
flooding damages with census tract income 
is not significant. 



Figure 7: Vulnerability to climate change impacts on mortality risk is driven by census tract 
age demographics. This figure shows that the estimated mortality damages from climate change 
are strongly correlated with the age demographics of a census tract’s population. Whiskers on the 
left represent impacts for census tracts with the smallest share of people ages 65+, representing 
tracts with a younger age distribution. Whiskers on the right represent impacts for census tracts 
with the greatest share of people ages 65+, representing tracts with an older age distribution. This 
figure is made by dividing all census tracts into ten groups based on their share of the population 
65 years and older. For each group, the blue bar represents the 25th to 75th percentile range of 
mortality impacts and the red dot represents the median mortality impact. Census tracts with a 
higher share of population that is 65 years or older are far more vulnerable to the mortality risks of 
climate change. While not shown, other factors can influence vulnerability to mortality risk, such as 
average climate and income within a tract.
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Figure 8: Drivers of vulnerability to climate change for hours worked, electricity 
expenditures, and natural gas expenditures. This figure shows that the magnitude of estimated 
change in hours worked, electricity consumed, and natural gas consumed (per household) from 
climate change are driven by different determinants of vulnerability. Red circles and whiskers are 
constructed analogously to Figure 7. For hours worked, the sector of employment is critical: tracts 
with the highest share of the population working in high-risk sectors (such as agriculture and 
forestry) face the largest impacts on hours worked. For energy expenditures, today’s average climate 
drives vulnerability: climate change impacts on electricity expenditures are larger for tracts that are 
hotter today, while climate change causes larger natural gas expenditure savings in tracts that are 
colder today. While not shown, other factors can influence vulnerability to damages in these three 
sectors, such as income and population density.  
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Electricity Consumption Impacts by 
Cooling Degree Days

Natural Gas Consumption Impacts by 
Heating Degree Days
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The Climate Vulnerability Metric 
(CVM)
Figure 9 presents a map of the Climate 
Vulnerability Metric (CVM) at the census 
tract scale. As detailed in previous sections, 
the CVM is presented as damages of climate 
change as a share of 2019 census tract level 
income. That is, a value of 6 (solid red color 
on the map) indicates that the median 
climate change projection estimates a 
census tract will suffer annual damages in 
2050 that amount to 6% of annual income.  
This figure is the sum of all category-specific 
estimates shown in Figure 6.

Figure 9 shows that climate change will 
have highly unequal impacts across 

Californian census tracts. 
While some regions in the 
southeast are estimated to 
suffer damages that exceed 
5.7% of annual income, 
other high-elevation 
regions are estimated to 
see benefits of up to 10%. 
Some low-lying urban 
areas are estimated to be 
particularly vulnerable, 
while much of the central 
valley suffers at least 
moderate damages. The 
wide diversity of projected 
impacts underscores 

the importance of estimating climate 
vulnerability at a community level.  

Figure 10 again maps the CVM, but 
additionally highlights the contrast 
between census tracts that are designated 
as Disadvantaged Communities (“DAC”, 
following the designation by the California 
Environmental Protection Agency 
(CalEPA),lxix for the purpose of SB 535lxx) 
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versus those that are not. DAC tracts 
are outlined in black and have full color 
saturation in Figure 10, while all other 
counties are semi-transparent. This figure 
makes clear that most DAC tracts suffer 
negative impacts from climate change, 
unlike the many non-DAC tracts where 
climate change brings benefits from 
reductions in extreme cold. Moreover, 
DAC tracts are some of the most severely 
impacted, such as tract 06081606100 in 
central Riverside County, where damages 
reach 5.7% of annual income. In general, 
DAC tracts are projected to see larger 
impacts on hours worked and on electricity 
expenditures than non-DAC tracts, and to 
enjoy larger natural gas savings. However, 
flooding impacts are larger in non-DAC 
tracts, as are projected mortality impacts. 
The wide range of CVM values in DAC 
tracts is explained, in part, by the fact that 
CalEPA’s designations are based on current 
environmental conditions, while the CVM 
is based on future climate conditions. Thus, 
as environmental conditions continue to 
evolve into the future, DAC designations 
will also evolve.

The wide 
diversity of 

projected 
impacts 

underscores 
the importance 

of estimating 
climate 

vulnerability at a 
community level.  



Figure 9: Climate Vulnerability Metric (CVM), median outcome. The CVM is computed as 
the median estimate of aggregated climate damages in 2050, relative to 2020, under a moderate 
emissions scenario (RCP 4.5) and represented as a share of 2019 income. A value of 4 indicates the 
annual damage to human welfare from climate change across categories is equivalent to 4% of 
tract-level income, while a value of –3.5 indicates a benefit to human welfare that is equivalent to 
3.5% of tract-level income. The map shows a wide diversity of vulnerability to the combined impacts 
of climate change across the state, with the largest damages in southeastern California and the San 
Francisco Bay area, and benefits in northern California outside of the Central Valley.
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Figure 10: Climate Vulnerability Metric (CVM) in Disadvantaged Communities (DACs).  
The CVM is computed as the median estimate of aggregated climate damages in 2050 under 
the moderate RCP 4.5 emissions scenario, represented as a share of 2019 income. Census tracts 
determined to be disadvantaged (DAC) under CalEPA’s updated CalEnviroScreen 4.0 designationslxxi 
are in solid colors and outlined, while non-DAC census tracts are semi-transparent. The majority of 
DAC tracts are estimated to experience negative impacts of climate change in 2050, and DAC tracts 
include some of the worst affected tracts in the state (e.g., Riverside in southeastern California). The 
imperfect alignment between DAC tracts and those with high CVM values can be explained in part 
by the fact that DAC designations are based on current social and environmental conditions and 
not on vulnerability to future impacts of climate change, as in the CVM.

-
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While the maps in Figures 9 and 10 give an 
overall picture of geographic differences in 
projected climate change impacts across 
California, it can be difficult to discern 
regional patterns without additional 
analysis. In Figures 11 and 12, we show 
category-specific and overall CVM results at 
the regional level, using boundaries which 
were defined in the state’s Fourth Climate 
Change Assessment.lxxii These figures show 
the patterns across regions of California 
that share similar climate conditions and 
highlight how each climate region is likely 
to face impacts on human welfare that 
differ strongly across categories.

Specifically, Figure 11 shows that the San 
Francisco Bay region is projected to suffer 
the largest impacts from climate change, 
with median projected damages of 1.4% 
of 2019 tract level income. In contrast, 
the North Coast region is projected to 
experience benefits amounting to 1.5% of 
2019 tract level income.

These results are decomposed further in 
Figure 12, where impacts are shown within 
each category for each climate region. This 
figure shows that while mortality damages 
dominate in most regions, impacts on 
the workforce are important drivers of 
climate vulnerability in the Inland South, 
Sacramento Valley, San Joaquin Valley, and 
the Sierra Nevada Mountains, while flooding 
is substantial in San Francisco Bay Area. The 
North Coast region is the only region with 
net benefits, which come primarily through 
avoided deaths due to extreme cold, but 
also are due to increases in hours worked 
and decreases in natural gas spending.

Regional analysis of the 
Climate Vulnerability Metric  
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Figure 11: Climate Vulnerability Metric (CVM) across California climate regions.  The CVM 
is shown at the level of the state’s nine climate regions, as defined by the Fourth Climate Change 
Assessment. Regional CVM metrics were computed by taking the population-weighted mean across 
CVM values for all census tracts within a region. Moderate to high vulnerability to climate change 
in 2050 is estimated for the majority of the state. The San Francisco Bay Area is estimated to have 
the greatest vulnerability, while the North Coast is the only region estimated to have decreased 
vulnerability to climate change by 2050, relative to 2020.
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Figure 12: Climate change impacts across California climate regions. This chart shows 
projected impacts of climate change by impact category  for each of the state’s nine climate 
regions defined by the Fourth Climate Change Assessment. The units shown match the CVM, and 
are the projected damages from climate change as a share of a region’s income. The main driver 
of most regions’ CVM value is mortality damages, followed by labor damages. The San Fransisco 
Bay region is estimated to have the largest damages due in large part to increased mortality and 
flood damages, whereas the North Coast is estimated to have benefits due primarily to decreased 
mortality damages in the form of decreased cold-related deaths. Labor damages are substantial in 
the San Joaquin Valley, Sacramento Valley, and Inland South.
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community which can be used to direct 
targeted funding based on specific damages 
and help communities implement policies 
and programs to best adapt to the future 
impacts of climate change.
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The CVM provides California communities 
and policy makers with information about 
the relative climate vulnerability Californians 
may face in the future. The CVM can be 
used to direct funding to communities 
that will be disproportionately impacted 
by climate change and can be targeted 
based on impact category. For instance, 
census tracts with high energy cost impacts 
could receive targeted funds or rate plans 
to reduce energy costs. Policy makers and 
advocates could also use the CVM to identify 
a threshold of vulnerability that could be 
used to designate communities as “climate 
vulnerable” or “disadvantaged,” similar to 
the approach laid out in CalEnviroScreen. 
Mitigation and adaptation funding could 
then be directed to communities that are 
most classified as vulnerable to climate 
impacts to reduce the inequality of climate 
impacts that may be faced in the future.

The CVM can also be used in combination 
with other screening tools to identify 
communities that are vulnerable to current 
environmental and health hazards and may 
also be vulnerable to the future impacts 
of climate change. For instance, the CVM 
can be used to support the efforts of 
the Integrated Climate Adaptation and 
Resiliency Program (ICARP) or can be 
combined with census tract data from 
CalEnviroScreen to identify communities 
that are and will be disadvantaged by 
climate change and environmental hazards. 
In addition to a comprehensive estimate 
of the future impacts of climate change, 
the CVM can be broken down by physical 
hazard to identify the most significant 
drivers of climate damage in each California

Potential policy application of 
the CVM
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I. Constructing Dose-Response 
Functions
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a. Collect dose-response 
functions from previous 
literature

Mortality: Carleton et al. (2022)i separately 
estimates mortality-temperature response 
functions for the under 5, 5-64, and 65+ age 
groups conditional on an area’s GDP per 
capita and long run average climate. 

Labor: Rode et al. (2022)ii separately 
estimates the worker disutility-temperature 
response functions for high-risk and low-
risk sector workers.

Energy: Auffhammer (2022)iii estimates 
household electricity consumption-cooling 
degree day (CDD) and household natural 
gas consumption-heating degree day 
(HDD) response functions. We use a variant 
on the model presented in Auffhammer 
(2022) that is conditional on an area’s 
median household income and on its long 
run average climate. 

Flooding: We obtained from First Street 
Foundation already projected and 
monetized census tract damages due to 
flooding. The projections are based on 
depth-damage functions, which relate 
water depths to property damage and are 
developed in Armal et al. (2020)iv and Porter 
(2021)v .

To construct category-specific relationships 
between climatological factors and 
physical impacts, we draw from existing 
peer reviewed literature that uses big 
data and robust econometric methods to 
estimate dose-response functions over 
a geographically and temporally diverse 
sample. Most of these category-specific 
models quantify differential vulnerability 
by identifying and using social, economic, 
and climate variables that are found to 
drive differential vulnerability to climate 
events in the historical record. For example, 
lower income populations may face higher 
mortality risks under extreme heat, while 
locations that are on average hot have larger 
energy demand responses on hot days. 
We use these published dose-response 
functions as inputs into the CVM pipeline, 
adapting them to measure differential 
vulnerability at the scale of each California 
census tract by gathering relevant data on 
drivers of vulnerability at a census tract level. 
Combining this novel data collection effort 
with published dose-response function 
relationships, we are able to construct 
differential dose-response functions at the 
census tract level. The research we rely on 
is as follows: 
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b. Harmonize response 
functions across categories

Following Carleton et al., each tract’s dose-
response function is re-centered around 
its minimum mortality temperature (MMT) 
between 10 and 30 °C so that the mortality 
response is 0 at that temperature and 
relative to the MMT at all other points. Also 
following the authors, a weak monotonicity 
restriction is also applied that ensures the 
response function maintains a U-shaped 
curve (i.e., hotter temperatures cannot 
result in lower mortality rates above the 
MMT—see Appendix E.2 in Carleton et 
al). Finally, we then evaluate these tract-
specific dose-response functions at each 
1-degree C value between –45 °C to 65 °C. 
We plot these dose-response functions on 
an X-Y plane to generate Figure 3A in the 
main report. This results in a set of 8,057 
tract-specific dose-response functions 
where predicted mortality rates in each 
age group vary with each 1-degree C bin of 
daily average temperature.

Labor: Rode et al. estimate sector-specific 
restricted cubic spline dose-response 
functions. In this case, no other variables 
determine differential vulnerability to 
temperature besides sector of employment. 
Therefore, we evaluate both the “low 
risk” and “high risk” sector dose-response 
functions at each 1-degree C bin between 
–45 °C and 65 °C, and assign these two 
binned dose-response functions to 
each tract within California. Differential 
vulnerability to climate change is then 
determined based on different realized 
temperatures in each tract and different 
shares of employment in low versus high-
risk labor sectors.

The dose-response functions taken from 
existing research differ in important ways 
across different categories. For example, 
nonlinear relationships are modeled using 
different functional forms, and vulnerability 
is modeled based on different social, 
economic, and climatological factors 
relevant to each category. We harmonize 
these different dose-response functions 
as much as possible across categories to 
construct a set of comparable functions 
across diverse outcomes. While the 
harmonization process differs based on the 
category, for all categories besides coastal 
(where the dose-response function is not 
explicitly modeled by us), we end with 
a tract-specific “binned” dose-response 
function, where the response of the 
outcome (e.g., energy demand or mortality 
rate) is estimated for each 1 degree C 
temperature bin. We detail the process for 
each category below:

Mortality: Carleton et al. estimate age 
cohort-specific fourth order polynomial 
dose-response functions linking mortality 
rates to temperature, where the shape 
of the polynomials for each age group 
depends on income (log of GDP per capita) 
and on the long-run average temperature 
(see Carleton et al. for details). That is, 
these two variables determine differential 
vulnerability to temperature within each 
age group. To construct age cohort-specific 
dose-response functions for each of the 
8,057 census tracts in California, we use 
tract-level values of log GDP per capita and 
long-run average temperature (as described 
below) to determine the shape of the dose-
response function in that location.
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Zjt is an array of two terms which control for 
precipitation, αj are zip code fixed effects, 
φm are month of year fixed effects,  ψy are 
year fixed effects, and εit is a stochastic error 
term.

Energy dose-response functions differ 
from the impact categories above in that 
they are functions of heating and cooling 
degree days, rather than a distribution of 
daily average temperatures experienced 
throughout the year. Heating and cooling 
degree days exploit hourly variation in 
temperature and are standard in the energy 
literature.  However,  like Carleton et al. (2022), 
Auffhammer’s dose-response functions 
vary based on location-specific income 
(median household income) and climate 
(long-run average annual cooling and 
heating degree days). We therefore follow 
the procedure outlined for mortality where 
we determine a tract-specific sensitivity to 
both heating and cooling degree days for 
both electricity and natural gas, based on 
the income and long-run average climate 
of each census tract. However, we do not 
“bin” this response function based on daily 
average temperature; instead, we generate 
estimated climate change impacts using 
cooling and heating degree days directly.

Energy: We construct our household 
electricity consumption and natural gas 
consumption dose-response functions 
using a model adapted from Auffhammer 
(2022). Specifically, we use household-
level electricity and natural gas billing data 
observed at roughly monthly intervals over 
the years 1999-2009 for electricity and 2004-
2015 for natural gas, data obtained through 
a confidential data sharing agreement with 
California’s Invester Owned Utilities (see 
Auffhammer (2022) for details). We estimate 
the following econometric model:

where qit is household i’s average daily 
electricity or natural gas expenditure 
during billing period t. HDDjt, CDDjt are 
average daily heating and cooling degree 
days based off a 65 °F threshold calculated 
as described in Section II in zip code j over 
billing period t. HDDmeanj, CDDmeanj are 
zip code specific long-run averages of daily 
heating and cooling degree days from 
1998 - 2015, and are interacted with (or 
multiplied by) the respective time-varying 
HDD and CDD terms to capture differential 
sensitivity of expenditures to heat and 
cold driven by different levels of climate 
adaptation. Yj is the zip code level time 
invariant 2015 median household income, 
and is interacted with both the HDD and 
CDD terms to capture differential sensitivity 
of expenditures to heat and cold driven by 
different levels of income. 

Mortality: Differential vulnerability in the 
mortality-temperature relationship is based 
upon tract income and long-run average 
climate. 

c. Assemble tract-level 
covariate data

(1)
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Using the logic that these investments 
and expenditures may provide benefits to 
individuals who reside in the area without 
it being reflected in their incomes, we 
downscale GDP to the tract level by adding 
tract PCI to a county-specific value which 
is the residual of county GDP and county 
PCI equally split by the number of people 
in the county. This ensures that the sum 
of our downscaled tract GDP equals BEA 
county-level GDP, but allows us to capture 
some of the within-county disparities of 
the PCI series. Replicating Carleton et al., 
to construct our final income covariate, we 
take the 10-year average of our tract-level 
GDP per capita series between 2010-2019, 
convert it to 2005$, then take the natural 
log.

II. Long Run Average Climate: We project 
mortality with a 2020 climatology derived 
from daily surface air temperature as 
described in Section II below, but with 
daily temperature fields averaged into 
simple arithmetic annual means before 
regionalization. The annual regional values 
are then averaged into a climatology using 
a 30-year half-Bartlett kernel—averaging 
from 1990 to 2020 with the greatest weights 
on the later years.

III. Age-Specific Population: Once we 
generate mortality impacts per 100,000 
for the under 5, 5-64, and 65 + age groups 
for each tract, we multiply this rate by the 
number of individuals in each age group to 
calculate total tract mortality impacts. We 
construct a series of the number of people 
in each age group by tract using ACS Age 
by Sexviii data, which provides us a total 
count for various age bins (we sum across 
male and female) for each tract.

Generally, regions with higher incomes 
or historically hotter climates have lower 
mortality responses to extremely high 
temperature occurrences. To match the 
variables used in the model specified in 
Carleton et al., we construct tract-level 
variables for GDP per capita and a 30-year 
average historical climate, while tract-
level population by age data allows us to 
compute total mortality impacts from age-
specific dose-response functions.

I. Log of GDP per capita: The income series 
used to estimate dose-response functions 
in Carleton et al. is the log of the US county 
equivalent-level (ADM2) constant GDP 
per capita in 2005$. They construct this 
series by downscaling state-level GDP per 
capita data from Penn World Tables (see 
Appendix B.3 in Carleton et al. for more 
details). The standard source for US GDP 
data is the Bureau of Economic Analysis’ 
(BEA) Gross Domestic Product by Countyvi 

series, however the highest resolution this 
is made available is at the county level. 
Given we want to capture the differential 
vulnerability in the mortality-temperature 
relationship stemming from differential 
incomes between tracts within counties, we 
use the distribution of another measure of 
income, the American Community Survey’s 
(ACS) Per Capita Incomevii (PCI) series, to 
downscale BEA GDP per capita data to 
the census tract level. Our downscaling 
method is only an approximation however, 
since while GDP per capita and PCI are 
similar measures of income, GDP measures 
all economic activity generated within a 
given geographic area including that of 
businesses, while PCI only accounts for the 
income brought in by individuals whose 
residency is in that area. Generally, GDP per 
capita is larger than CPI due to the inclusion 
of categories such as business income and 
government spending. 
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We use ACS’s 2019 Industry by Occupation 
for the Civilian Population tableix which 
provides a count of persons over 16 
employed in each industry to aggregate the 
number of high-risk and low-risk workers in 
each census tract.

Energy: Differential responses in cooling 
and heating use are driven by a tract’s 
median household income as well as the 
long-run average annual number of heating 
and cooling degree days. Higher income 
households tend to increase their energy 
use more on hot and cold days, presumably 
due to either larger spaces heat/cool or a 
lower marginal utility of income. Tracts in 
hotter climates increase their electricity 
use more on hot days while tracts in colder 
climates increase their natural gas use more 
on cold days, reflecting the prevalence of 
residential cooling and heating systems in 
these areas respectively. Dose-response 
functions are interpreted as the change in 
annual household electricity and natural 
gas consumption in kilowatt hours (kWh) 
and therms, respectively, due to annual 
cooling and heating degree days.

I. Household Income: To match the 
specification of the income variable used in 
Auffhammer, we use census tract level 2015 
median household income from ACSx. 

II. Annual Average HDDs and CDDs: 
Using the method to calculate degree days 
outlined in Section II below, daily average 
HDD and CDD values are taken at the tract 
level from 1998-2015 PRISM data.

III. Households per tract: In order to 
convert from impacts per household 
to total tract impacts, we require the 
household count in each tract. We use the 
2019 Total Households series from the ACS 
Households and Families tablesxi.

Labor: We use the worker disutility-
temperature dose-response functions 
defined in Rode et al., which separately 
estimate the relationship for high-risk and 
low-risk sectors of labor. Unlike mortality 
and energy which have tract-specific dose-
response functions based on measures 
of tract income and long run climate, 
the shape of the labor dose-response 
functions are fixed for each labor risk 
group. Rather, differential vulnerability in 
the labor category is determined by the 
share of workers in the high-risk sector, 
who are forced to work fewer hours in 
response to hotter conditions compared 
to low-risk workers, causing them higher 
disutility. Additionally, tracts with a higher 
percentage of the population employed 
have a higher share of individuals exposed 
to the labor impacts of climate change. 
Similar to the interpretation of the MMT in 
the mortality category, there is an optimal 
working temperature (at which the least 
amount of time working is lost), and all 
other points along the dose-response 
curve represent hours lost per worker at 
that given daily maximum temperature (see 
Figure 5 in main text). The optimal working 
temperature for low-risk workers in Rode et 
al. Is 29 °C and for high-risk workers it is 30 
°C.

I. High-risk and low-risk workers: 
Following the distinction made in Rode 
et al., workers in the Construction, 
Manufacturing, Farming, Mining, Hunting, 
Forestry, Transportation, Warehousing, 
and Utility sectors are considered high-
risk in the context of the worker disutility-
temperature relationship. Workers in all 
other sectors are classified as low-risk. 



II. Projecting Future Climate 
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a. Climate data transformation 
and aggregation

census tract. Finally, we estimated average 
histograms for 2020 and 2050 with the 21-
year arithmetic mean of the annual census 
tract histograms, averaging the annual 
census tract histograms from 2010 to 2030 
and 2040 to 2060, respectively.

Our energy category projection follows 
Auffhammer, adapting similar methods to 
estimate warming and cooling degree-day 
variables. We interpolated daily minimum 
and maximum air temperature fields to 
estimate hourly air temperature following 
Schlenker & Roberts (2009)xvi. We then 
used the hourly air temperature fields 
to calculate the annual sum of cooling 
degree days for 65 °F and 80 °F thresholds, 
and annual sum of heating degree days at 
the 65 °F threshold. We then regionalized 
these annual degree-day fields to US 
census tracts using the same population-
weighting scheme described above. We 
estimated degree day climatologies for 
2020 and 2050 with the 21-year arithmetic 
mean for each of the annual census tract 
degree-days, computing the average for 
each tract from 2010 to 2030 and 2040 to 
2060, respectively. Finally, we adjusted each 
of these climatologies with a “delta-shift”. 

First, we calculated a “delta” which is the 
difference between the GCM simulation’s 
average degree day for each tract from 1998 
to 2015 and comparable values computed 
from a reference product—here, 2.5 minute 
grid resolution PRISM daily minimum and 
maximum air temperature fieldsxvii. This 
delta is then added to each of the 2020 and 
2050 degree-day climatologies by GCM, 
in order to ensure the projected degree 
days are consistent with the dose response 
function reference data used in Auffhammer 
(2022).

We project the impacts of climate change 
on mortality, labor, and energy with an 
ensemble of daily 0.25° grid resolution 
downscaled climate projection fields 
from NASA Earth Exchange Global Daily 
Downscaled Projections (NASA NEX-
GDDP) per Thrasher et al. 2012xii under 
representative concentration pathway 
4.5 (RCP4.5) and “historical” scenario 
simulations. We standardized all ensemble 
members to a 365-day calendar, removing 
leap years. The NEX-GDDP global climate 
models (GCM) do not represent a probability 
space across climate uncertainty. In order 
to ensure the tails of climate uncertainty 
are properly represented, the NEX-GDDP 
ensemble is supplemented with synthetic 
GCMs, called surrogates, that fill in the 
tails of the distribution. The final ensemble 
is called the surrogate mixed model 
ensemble (SMME) and is described in detail 
in Rasmussen et al. 2016xiii.

We used daily average surface air 
temperature and maximum surface air 
temperature fields for mortality and labor 
projections, respectively. For both fields, we 
first transformed each year of daily values, 
at each grid point into an annual histogram 
with regular 1 degree Kelvin bins from 230 
Kelvin to 340 Kelvin. 

We then regionalized the histograms into 
2010 US Census tracts (from 2019 US TIGER 
polygonsxiv), weighing each grid point 
histogram with its estimated population 
(from 2019 GPWv4r10xv) and averaging to 
estimate an annual histogram for each



III. Calculating Impacts of Climate Change
For each impact category, we calculate the 
impacts of climate change by combining 
tract-level dose-response functions with 
impact category-specific historical and 
future temperature distributions under 
a moderate emissions scenario (RCP4.5). 
However, due to the uniquely specified 
dose-response functions (described above 
in Section I.b) and the nonuniform data 
structures of the necessary components, 
the process of calculating climate change 
impacts is slightly different for each impact 
category. The details are as follows.

Mortality: The mortality dose-response 
functions represent the age-specific 
increase in the mortality rate (deaths per 
100,000) caused by a single day at a given 
daily average temperature, relative to a 
day at each tract’s minimum mortality 
temperature (MMT). The historical and 
projected climate variable used is the 
annual average number of days with a daily 
average temperature in a given 1-degree 
C bin. To compute climate change impacts 
for mortality, we apply the following 
calculation:

where 	    is the annual change in total 
deaths caused by climate change in 2050 
within census tract      ,      	 is the age and 
tract specific mortality response at a given 
temperature bin b (measured as the change 
in deaths per 100,000),            is the tract 
specific change in the number of days in a 
year for a given 1-degree C temperature bin 
between 2020 and 2050, and           is the 

population of a given age group in each 
tract, measured in units of 100,000. Note 
that temperature bins b are of width 1 
degree C and are centered at 0.5 degree C 
intervals, starting at –44.5C and ending at 
64.5C. 

Mechanically speaking, we first compute  		
            for all tracts i and all temperature bins 
b. This is the difference between the binned 
temperature distributions of the historical 
and projected climates so that the result can 
be interpreted as the number of additional 
days in a year that a tract experiences daily 
average temperature in a given 1-degree 
bin in 2050 relative to 2020. For example, 
the number of days per year falling between 
32 and 33 degrees C is likely to increase 
in most census tracts by 2050, while the 
number of days per year falling between 0 
and 1 degrees C is likely to decrease in most 
census tracts by 2050. Then, we multiply 
this tract-specific change in temperature 
distribution by the tract-specific response 
at each 1-degree bin,        . We then sum 
across the temperature bins to get the age-
specific annual mortality impacts of climate 
change in 2050 per 100,000 for each tract 
and each age group. In order to combine 
across age groups and calculate total 
mortality impacts, we multiply age-specific 
mortality rates by the population in each 
tract in each age group, then sum across 
age groups to get total deaths in 2050 due 
to climate change for each tract. 

Labor: The labor dose-response functions 
represent the worker hours lost from a 

CVM Report | 63

(2)



single day at a given daily maximum 
temperature, relative to a day with a 
maximum temperature of 29°C for low-
risk workers and 30°C for high-risk workers. 
There are two dose-response functions, one 
for high-risk workers and another for low-
risk workers, following Rode et al. (2022). 
The historical and projected climate variable 
used is the annual average number of days 
with a daily maximum temperature in a 
given 1-degree C bin. To compute climate 
change impacts, we apply the following 
calculation:

where       is the annual change in the 
number of worker hours due to climate 
change within census tract    ,        is the 
sector specific labor response at a given 
temperature bin    ,               is the tract specific 
change in the number of days in a year for a 
given 1-degree C temperature bin between 
2020 and 2050, and    is the number of 
workers in a given risk-share sector group 
in each tract.

To compute this object, we first multiply the 
difference in the number of days in each 
temperature bin (                ) by the risk category-
specific response at that temperature (      ). 
We then sum across temperatures to get 
the risk category-specific labor hours lost 
impact of climate change in 2050 per worker. 
These risk category-specific impacts are 
then multiplied by the number of workers 
in each tract in each sector of employment 
to get the number of expected labor hours 
lost in for high and low-risk sectors of work. 
These are then summed to get total labor 
hours lost per tract in 2050 due to climate 
change. 

Energy: The energy dose-response 
functions represent the change in 
household electricity and natural gas 

consumption levels due to the number of 
heating degree days (HDDs) and cooling 
degree days (CDDs) experienced. We 
construct census tract level sensitivities to 
HDDs and CDDs using the above empirical 
specification, as follows: 

Where           represents the change in energy 
consumption for a one unit change in 
HDDs for tract        and fuel f. Similarly,	
represents the tract and fuel-specific 
change in energy consumption (in kWh for 
electricity and therms for natural gas) for a 
one unit change in CDDs:

We then use these two sets of dose-response 
functions to calculate the total change in 
fuel-specific energy consumption due to 
climate change with the following formula:

where      is the change in energy 
consumption due to climate change for a 
given fuel source (electricity or natural gas) 
in a given census tract,        and          are the 
tract specific heating and cooling degree 
day responses for fuel source     , and  
and            are the difference in annual 
heating and cooling degree days in a given 
tract between 2020 and 2050. 
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(3)

(4)

(5)

(6)



IV. Valuing Impacts in Dollars
In order to combine impacts measured in 
physical units across impact categories, we 
first value climate change impacts in each 
category in dollars using a category-specific 
methodology that captures economic 
impacts and human welfare effects. 

Mortality: Deaths are monetized equally 
across age groups and tracts using the U.S. 
EPA value of a statistical life (VSL), which is 
$7.4 million in 2006$xviii. Converted to 2019$ 
using the St. Louis Federal Reserve’s implicit 
price deflator series, this value equals 
$9.15 million per life lost. In each tract, we 
multiply the total number of deaths by the 
VSL to calculate total monetized value of the 
deaths due to climate change, measured in 
2019$.

Labor: Impacts on worker hours are 
monetized by estimating the disutility 
workers experience under extreme working 
conditions and turning such wellbeing 
losses into dollars using average local 
wages, following the approach outlined 
in Rode et al. First, we take the sum of the 
2019 ACS Aggregate Wage or Salary Income 
for Householdsxix and Aggregate Self 
Employment Income for Householdxx series 
and divide by the count of total workers 
to estimate the average annual wage per 
worker. We then follow the methodology 
used in Rode et al. to calculate the worker 
disutility from an hour unable to work, 
first using 1500 working hours a year to 
convert from annual to hourly wages, then 
dividing the result by a Frisch Elasticity of 
labor supply coefficient of 0.5 to obtain the 
value of disutility from working, given the 
observed labor supply response (see Rode 
et al. for details on this calculation). Total 

worker hours lost to climate change are then 
multiplied by this tract-specific measure of 
hourly worker disutility.

Energy: Change in household electricity 
and natural gas consumption is valued 
using average residential prices paid per 
unit of demand of each energy source. 
While consumers across the state pay 
different prices based on location, use, 
source, or enrollment status for various 
programs, this heterogeneity is difficult to 
comprehensively and accurately capture 
at a census tract level. Hence, we use 2020 
EIA statewide average prices of 20.45 
cents per kWh for electricityxxi and $14.14 
per thousand cubic feet of natural gasxxii. 
We convert these to 2019$ and convert 
thousands of cubic feet to therms to get 
our final values of 20.21 cents per kWh and 
$1.35 per therm of natural gas. For each 
tract, prices are multiplied by total change 
in consumption to calculate the annual cost 
of changed energy consumption under 
climate change in 2050.

Flooding: The unit of measure for the 
flooding impacts is average annual property 
loss, a metric which is already measured in 
dollars. However, the damage data provided 
to us by the First Street Foundation is in 
2020$. We use the FRED implicit price 
deflator to convert from 2020$ to 2019$ 
to be consistent with the other impact 
categories. The data provided by First Street 
Foundation was also pre-aggregated to 
2020 census tracts. To ensure consistency 
across categories for their combination into 
the CVM, we used the National Historical 
Geographic Information System Crosswalk 
to transform 2020 tract damages to 2010 
tract damages.
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V. Constructing the CVM 
Once we have all our individual category-
specific impacts valued in 2019$, we sum 
across them to calculate combined climate 
change damages per tract. While these 
combined monetized damages can be 
a useful measure for certain situations, 
inevitably tracts with higher populations 
will tend to have higher damages. We take 
a two-step approach in normalizing tract 
damages to better portray how individuals 
living in each tract will experience the costs 
of climate change.

Calculate Damages per Capita: We begin 
by dividing each tract’s combined damages 
by the number of people living in that tract, 
using the ACS Population by Tract series 
described above in the mortality covariates 
section. The following gives us the average 
damages per person in each tract:

where           are category-specific monetized 
total tract-level damages (in 2019$) and
          is the tract-specific population.

Calculate Damages as a Share of Tract 
Incomes: Recognizing that the relative 
burden of a given level of damages 
imposed differs based on a person’s 
income, we ultimately express the CVM as 
a percentage of average tract income per 
capita. To construct this variable, we divide 
tract damages per capita (in 2019$) by the 
2019 ACS tract-specific Per Capita Income 
seriesxxiii, then multiply by 100. The equation 
is:

where         are category specific damages 
monetized total tract damages of a tract 
and                  is total tract income.

We construct the CVM under a set of 21 high-
resolution, bias-corrected global climate 
projections and 11 surrogate models that 
provide daily temperature and precipitation 
to the year 2099 from the NASA Earth 
Exchange (NEX) Global Daily Downscaled 
Projections (GDDP). Probabilistic weights 
are assigned to each to represent the 
full probability distribution, as described 
in section II, “Projecting Future Climate,” 
allowing for calculation of a probability 
distribution for each census tract.

The interquartile range across the GCMs 
within each census tract is computed as the 
SMME probability-weighted 0.25 and 0.75 
quantiles. We also compute the median. 
Note that we sum the category-specific 
census tract damages for each GCM, giving 
us a distribution across climate uncertainty 
of census tract level combined damages 
that we then convert to a CVM and quantile. 
Because quantiles in the flooding damage 
data are already calculated when we 
receive them, we simply sum the 0.25, 0.50, 
and 0.75 quantiles of flooding damages to 
the respective quantiles of the combined 
value across the remaining categories. This 
assumes that there is perfect correlation 
between the flooding damage and the sum 
of other categories (i.e., flooding damage

a. Assessing climate 
uncertainty 
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will be at the 75th percentile at the same 
time as the sum of other categories). We 
expect that error to be small.

We present the median scenario as 
our primary CVM, with the weighted 
interquartile range to illustrate the range of 
potential damages coming from uncertainty 
in projecting future climate.

In Figure 10, we overlay California’s 
disadvantaged communities (DAC) tracts 
over our CVM results. For a DAC vs non-
DAC designation, we use CalEnviroScreen 
version 4.0xxiv from the California Office of 
Environmental Health Hazard Assessment, 
which has been recently updated for 
2022. CalEnviroScreen is utilized to 
indicate regions of California most prone 
to various sources of pollution. It includes 
several population characteristics, such 
as the identification of disadvantaged 
communities based on their higher levels 
of pollution and lower population sizes. 
Specifically, it takes the top 25% tracts with 
the greatest scores in these categories and 
calls these disadvantaged communities 
(DACs). Regions outside of this top 25% are 
considered non-DAC.

In Figures 11 and 12, we show the CVM and 
its components by the 9 regions defined 
by CalAdapt’s 2018 California’s Fourth 
Climate Change Assessment reportxxv. We 
use CalAdapt’s regional shapefile to assign 
census tracts to the region in which they 
sit. In cases where a census tract falls within 
more than one region, we assign it to the 
one where the majority of its area lies. 
We then use tract populations to take a 
weighted mean of damages as well as 

incomes to generate a CVM at the regional 
level. In Figure 12, we do this for each 
impact category to show how the drivers of 
the combined CVM differ by region.

In Figures 7 and 8, we show how impact-
category effects of climate change vary 
based on category-specific drivers of 
vulnerability. These are proportion of 
population over 65 for mortality damages, 
share of high-risk sector workers for labor 
damages, number of annual CDDs for 
electricity consumption damages, and 
number of annual HDDs for natural gas 
consumption damages. We first divide up 
tracts into 10 groups, or “deciles based on 
their values for these vulnerability drivers. 
We then average category-specific impacts 
in their respective physical units across the 
tracts in each decile group for each climate 
model. In the final chart, we plot the GCM-
weighted median and interquartile range 
of category-specific impacts (Y-axis) for 
each decile of the variable of differential 
vulnerability (X-axis).

To identify the 10 most populous cities in 
California highlighted in our headline CVM 
map (Figures ES3/9), we use the GeoNames 
databasexxvi. As of the latest data, the 10 
most populous cities in California are Los 
Angeles, San Diego, San Jose, San Francisco, 
Fresno, Sacramento, Long Beach, Oakland, 
Bakersfield, and Anaheim. Coordinates to 
plot these cities are also taken from this 
database. 

b. CVM decompositions
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