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A.1. Temperature, precipitation and humidity projections

In constructing the ensemble of temperature and precipitation projections used in this analysis, we are
trying to address two challenges. First, and preeminently, ensembles of opportunity like the Coupled Model
Intercomparison Project (CMIP) ensembles are not probability distributions because they are arbitrarily
compiled; any sampling from such a distribution would thus not be random and would likely undersample
“tails” of the probability distribution (Tebaldi and Knutti , 2007). Yet while simple climate models like
MAGICC (Meinshausen et al., 2011) project probability distributions of global mean temperature change,
they lack the spatial and temporal resolution needed to estimate climate risk, which downscaled global
climate model (GCM) output can provide. We seek to combine these strengths. Second, traditional pattern
scaling approaches estimate forced climate change but neglect unforced variability (e.g., Mitchell , 2003). The
interactions between these two factors may play a significant role in the timing and amplitude of climate
change damages, so here we estimate the combination and forced and unforced variability.

We start with an estimated probability distribution of global mean temperatures over time from a simple
climate model, use this distribution to weight local projections of monthly temperature and precipitation
from more complex global climate models and from surrogate models employed to ensure the tails of the
probability distribution are represented, then use historical relationships to translate monthly values to daily
values. We also construct a probabilistic estimate of wet-bulb temperatures based upon daily projections.

A.1.1. Global mean temperature

Projections of global mean temperature for the four representative concentration pathways (RCPs) were
calculated using MAGICC6 (Meinshausen et al., 2011) in probabilistic mode. MAGICC is a commonly-used
simple climate model that represents the atmosphere, ocean, and carbon cycle at a hemispherically-averaged
level. The distribution of input parameters for MAGICC that we employ has been constructed from a
Bayesian analysis based upon historical observations (Meinshausen et al., 2009; Rogelj et al., 2012) and
the climate sensitivity probability distribution of the Intergovernmental Panel on Climate Change’s Fifth
Assessment Report (AR5) (Figure A1) (Collins et al., 2013).

The climate sensitivity probability distribution from AR5 is based on several lines of information. Observa-
tional, paleoclimatic, and feedback analysis evidence indicate 5th/17th/83rd percentiles of 1.0�C/1.5�C/4.5�C.
Additional evidence from climate models suggests a 90th percentile of 6.0�C (Collins et al., 2013).

For each RCP, we used 600 MAGICC model runs provided by M. Meinshausen (pers. comm.). The
5th/17th/83rd/90th percentiles of equilibrium climate sensitivity for these 600 runs are 1.5�C/1.6�C/4.9�C/
5.9�C per CO2 doubling. The differences in climate sensitivity between MAGICC and AR5 in part reflect
sampling and in part the constraints needed to fit historical observations with the MAGICC model structure.

A.1.2. Global climate model output

Due to computational constraints, GCM results are often calculated with horizontal resolutions too coarse
(e.g., around 2o ⇥ 2o) to assess climate change vulnerabilities and impacts at a spatial scale of interest to
regional planners and policy makers. Additionally, GCM projections that are directly available from the
CMIP5 archive contain systematic model biases that must be corrected before being employed to address
climate impacts. In this study, projections of monthly average temperature, minimum daily temperature,
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Figure A1: Survival function of climate sensitivities from MAGICC. Red squares indicate the statements made by AR5.

maximum daily temperature, and precipitation were obtained from a monthly bias-corrected and spatially-
disaggregated (BCSD) archive derived from select CMIP5 models (Brekke et al., 2013). For the continental
United States, projections are disaggregated to 1/8 ⇥ 1/8 degree (⇠14 km) horizontal resolution, while 1/2
⇥ 1/2 degree (⇠56 km) model output with global coverage over land only from is used to provide projections
for Alaska and Hawaii. A detailed inventory of the models used with each RCP is shown in Table A1.

Rather than use the absolute model projections of temperature and precipitation, we assume that the
models are best at projecting changes from a baseline period from their own historical climate estimates,
here selected as 1981–2010. Model projections are then mapped and added to observed temperature and
precipitation normals (1981–2010) at stations from the Global Historical Climatology Network (GHCN)
(Arguez et al., 2012) (http://go.usa.gov/KmqH). The GHCN data set is a database of meteorological
variables measured daily worldwide and is the most comprehensive set of climate data within the United
States. The use of station-level normals accounts for local meteorological phenomena, such as the urban heat
island effect and land-sea interaction, that are not well reproduced by the gridded BCSD model output. Only
GHCN stations that met the strictest of the National Climatic Data Center’s data completion requirements
for the 30-yr monthly climate normals definitions were used (2,688 sites for temperature, 2,722 sites for
precipitation).

A.1.3. Pattern fitting

We regard the output of each model as the sum of forced climate change and unforced climate variability.
We further assume that the forced climate change can be approximated as linear in the long-term (30-year)
running average of global mean temperature. Accordingly, for each CMIP5 model and scenario i and each at
station j, we fit the changes from the 1981–2010 reference levels for seasonal temperature and precipitation
to the linear model

y
i,j

(�T, t) = ˆk
i,j

�T + b
i,j

+ ✏
i,j

(t) (A1)

following Mitchell (2003). Here, �T is the running-average change in global mean temperature relative to
the reference period (1981–2010), ˆk is the estimated seasonal pattern, ˆk�T is the estimated forced climate
change, b

i,j

is the y-intercept and ✏(t) is an estimated temporal pattern of unforced variability. In our
analysis, we use a single realization of unforced variability from each CMIP5 model. Figure A2 shows an
example regression for one particular model and scenario (GFDL-CM3 under RCP 8.5) at New York City
for summertime monthly mean temperature and daily precipitation rate.

A.1.4. Probability weighting

We divide the unit interval [0, 1] into ten bins, with a somewhat higher density of bins at the tails of the
interval. (Specifically, the bins are centered at the 4th, 10th, 16th, 30th, 50th, 70th, 84th, 90th, 94th, and
99th percentiles.) The quantiles of global mean temperature change corresponding to the bounds and center
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Table A1: CMIP5 models included in temperature and precipitation projections

Model RCP 8.5 RCP 6.0 RCP 4.5 RCP 2.6
access1-0 x x
access1-3 x x
bcc-csm1-1 x x x x
bcc-csm1-1-m x x
bnu-esm x x x
canesm2 x x x
ccsm4 x x x x
cesm1-bgc x x
cesm1-cam5 x x x x
cmcc-cm x x
cnrm-cm5 x x
csiro-mk3-6-0 x x x x
fgoals-g2 x x x
fio-esm x x x
gfdl-cm3 x x x x
gfdl-esm2g x x x x
gfdl-esm2m x x x
giss-e2-h-cc x
giss-e2-r x x x x
giss-e2-r-cc x
hadgem2-ao x x x x
hadgem2-cc x x
hadgem2-es x x x x
inmcm4 x x
ipsl-cm5a-lr x x x x
ipsl-cm5a-mr x x x x
ipsl-cm5b-lr x x
miroc-esm x x x x
miroc-esm-chem x x x x
miroc5 x x x x
mpi-esm-lr x x x
mpi-esm-mr x x x
mri-cgcm3 x x x
noresm1-m x x x x
noresm1-me x x x x

of each bin are taken from the MAGICC6 output. CMIP5 model output is categorized into bins based on
the projected change in global mean temperature from 1981–2010 to 2081–2099.

In bins, primarily at the tail of the distribution, not represented by at least 2 CMIP5 models, we generate
model surrogates sufficient to bring the number of models plus surrogates to two. To generate a model
surrogate, we take the global mean temperature projection from MAGICC output corresponding to the
central quantile of the bin. If there is no CMIP5 output in the bin, we pick two models with global mean
temperature projections close to the bin, such that one model pattern reflects a large net increase in contiguous
US (CONUS) precipitation with temperature and one reflect a net decrease or lesser increase in CONUS
precipitation with temperature. If there is a single CMIP5 model in the bin, we pick a single model with a
precipitation pattern complementing the one in the bin. We then use the patterns from the selected models
to scale the global mean temperature projection and add the residuals from the same models, generating
a surrogate model that includes both forced change and unforced variability. A table of the models and
surrogate models used, along with the spatial patterns of temperature and precipitation change, is provided
in Tables A2–A5 and Figures A6–A7.

In the final probability distribution, the models and surrogates in a bin are weighted equally such that
the total weight of the bin corresponds to the target distribution for 2081–2099 temperature. For example,
if there are four models in the bin centered at the 30th percentile and stretching from the 20th to the 40th
percentiles, each will be assigned a probability of 20%/4 = 5%. Thus the projected distribution for global
mean temperature approximates the target (Figure A3).

For models that end in 2100, we extend projections to 2200 by assuming that global mean temperature
beyond 2100 follows the quantile of the MAGICC output that corresponds to that model’s position in the
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Figure A2: Left: Local summer (June-July-August) temperature anomaly at Central Park, New York City, versus global mean
temperature anomaly for the GFDL-CM3 model under RCP 8.5. Right: as for Left, but for daily precipitation rate (mm/day).

2081–2099 average. We apply the model’s own pattern of forced change and use residuals (i.e. unforced
variability) that are equal to the residuals from 2000 to 2099, run backwards to preserve continuity.

To assess the effect of the probability weighting on our results, we present in Tables A6 to A13 a compar-
ison of our projections with model weights and surrogate models to those based simply on the unweighted
distribution of results from CMIP5. Table A6 shows the sensitivity of regional average annual temperatures
under RCP 8.5 in a weighted and unweighted scheme. The largest differences between methods occurs at the
end of the 21st century in the 5–95th percentile interval. The differences between unweighted and weighted
range from 1.3�C in Hawaii to nearly 3.0�C over Alaska. Differences in seasonal precipitation totals are pre-
sented in Tables A7 to A10, and, in general, show less of a divergence between weighting schemes compared to
annual average temperature. Differences in extreme heat/humidity days (Chapter 4) are presented in Tables
A11 to A13. The largest differences between weighting schemes occurs in the most extreme conditions (ACP
Humid Heat Stroke Index Category IV).

A.1.5. Daily projections

Both GCM output and surrogate output are treated at the monthly average level. To generate daily
temperature and precipitation, we assume that relationship between the monthly means and the daily values
come from a stationary distribution (e.g. Wood et al., 2002), which is the standard approach for BCSD
downscaling. We randomly assign each future year to a historical year between 1981–2010. Monthly averages
are mapped to daily values from the GHCN stations using the additive relationship (for temperature) or
multiplicative relationship (for precipitation) from that historical year. Where daily observations are missing
from the 30-year historical record, we fill in the missing days and months using relationships between daily
and monthly values from gridded datasets and between the climatological 30-year normal value at the GHCN
station. A gridded observational data set (Maurer et al., 2002) and the North American Regional Reanalysis
(NARR) (Mesinger et al., 2006) are used to provide the daily values for the continental United States and
for Alaska and Hawaii, respectively. Where daily precipitation projections exceed twice the historical daily
maximum and ten times the model’s mean daily precipitation rate for the month, we invoke a “spill over”
routine that evenly distributes two-thirds of the incident daily precipitation to the nearest adjacent two days
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Figure A3: (Top) Global mean temperature trajectories for RCP 8.5 from MAGICC (blue), CMIP5 model output (red) and
model surrogates (grey). Heavy blue = median, light blue = 17th/83rd percentile, dashed blue = 5th/95th percentile, dotted
blue = 1st/99th percentiles. (Bottom) The distribution of 2081–2099 global mean temperature for RCP 8.5. Blue dots = CMIP5
output, black diamonds = model surrogates, blue curve = CMIP5 model output CDF, red curve = MAGICC projection, cyan
curve = CMIP5 models and model surrogates weighted to align with MAGICC projections.

within the month. Daily maximum and minimum temperatures for Alaska and Hawaii were calculated from
3-hourly NARR data. For the rare case when the daily downscaled T

min

< T
avg

< T
max

is not satisfied,
T

min

and T
max

are approximated as T
avg

- 2.5 K and T
avg

+ 2.5 K, respectively. An example of the daily
weather generation is shown in Figure A4.

A.1.6. Wet-bulb temperatures

At each GHCN site, we estimate a relationship between dry-bulb and wet-bulb temperature and the
associated error with (1) a simple linear model and (2) a piecewise linear model with a single breakpoint.
The model with the smallest Bayesian information criterion (BIC) is used. The simple linear model is of the
form:

T
w

(T ) = b0 + �0Td

+ ✏. (A2)

The piecewise linear model is of the form:

T
w

(T ) = b1 + �1 min(T
d

, T0) + �2 max(0, T
d

� T0) + ✏. (A3)

Here, T
w

is the wet bulb temperature, T
d

the dry bulb temperature, b
i

are y-intercepts, �
i

are slopes, and T0 is
the breakpoint. Errors ✏ are assumed to come from a stationary normal distribution, ✏ ⇠ N(0,�2

). The model
is fit to historical (1981–2010) maximum daily wet-bulb temperatures calculated using the Wobus method
(Doswell et al., 1982; Marsh and Hart , 2012) from 3-hourly 2-m temperature, 2-m dew point temperature
and pressure from NARR. Examples are shown in Figure A5. While commonly used, the Wobus method
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Figure A4: Example of data generation from one CMIP5 model (GFDL-CM3) and scenario (RCP 8.5) at Central Park, New
York, showing (a) seasonal projections for the century (relative to 1981–2010) , (b) monthly projections for 2091–2100 and (c) 10
independent daily weather projections for average temperature in July in 2099. The blue line is the average of all 10 projections
and is equal to the July 2099 monthly average.

does introduce small errors compared to more precise calculations (Davies-Jones, 2008). These errors are
generally < 1 K, and do not significantly affect the ACP Humid Heat Stroke index introduced in Chapter 4.

The regression provides the distribution of T
w

conditional on T
d

for the baseline climatology. To account
for the effects of climate change, we shift the conditional distribution upward by �0�T

f

, where �T
f

is
the local forced summertime temperature change given by ˆk�T in equation A1. In particular, we use the
relationship

T
w

(T
d

,�T
f

) = T
w

(T
d

��T
f

) + �0�T
f

(A4)

to generate estimates of future wet bulb temperatures. Note that, for cases where the simple linear model
best captures the distribution, this expression reduces to that model.

The extrapolation of the historical relationship between wet-bulb and dry-bulb temperatures effectively
assumes that the distribution of relative humidities remains near constant. In fact, because the land warms
faster than the ocean, relative humidity over land is expected to decrease in a warmer climate (Sherwood
and Fu, 2014). The failure of our historically-based method to account for this shift may result in a slight
upward bias in projected wet-bulb temperatures in areas not in proximity to large bodies of water such as
the oceans or the Great Lakes.
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Figure A5: Fit of historical summertime (June-July-August) daily maximum wet-bulb temperatures to daily average temperature
at Fulton County, Georgia and Harris County, Texas. Equations are shown for the best-fit piecewise linear model. The standard
deviation from the best-fit model is also shown.

Table A2: Selected patterns and probability weights used for RCP 2.6

Quantile Model Weight 2080–2099 global �T (C) 2080–2099 CONUS �P (%)
0.00 gfdl-esm2g 0.04 0.25 -1.41
0.04 scaled fio-esm 0.04 0.39 -0.70
0.10 giss-e2-r 0.02 0.46 2.42
0.10 scaled giss-e2-r 0.02 0.46 2.39
0.16 scaled fgoals-g2 0.04 0.52 2.99
0.20 fgoals-g2 0.04 0.58 3.34
0.30 scaled mpi-esm-lr 0.10 0.64 3.38
0.40 mpi-esm-lr 0.10 0.78 4.13
0.40 mpi-esm-mr 0.03 0.78 2.57
0.43 bcc-csm1-1 0.03 0.82 0.33
0.46 noresm1-m 0.03 0.84 0.59
0.47 ccsm4 0.03 0.86 5.01
0.55 noresm1-me 0.03 0.94 6.42
0.55 mri-cgcm3 0.03 0.92 3.78
0.63 miroc5 0.04 1.03 4.11
0.65 ipsl-cm5a-mr 0.04 1.07 -1.39
0.66 hadgem2-ao 0.04 1.08 -0.23
0.68 bnu-esm 0.04 1.13 1.02
0.76 ipsl-cm5a-lr 0.04 1.25 6.10
0.82 hadgem2-es 0.02 1.40 9.26
0.84 cesm1-cam5 0.02 1.46 13.56
0.85 csiro-mk3-6-0 0.02 1.45 10.41
0.85 canesm2 0.02 1.47 7.79
0.90 scaled miroc-esm-chem 0.02 1.62 7.43
0.91 miroc-esm 0.02 1.65 7.25
0.93 miroc-esm-chem 0.03 1.69 7.78
0.97 gfdl-cm3 0.03 1.92 6.14
0.99 scaled hadgem2-es 0.01 2.18 14.41
0.99 scaled miroc-esm-chem 0.01 2.18 10.05
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Table A3: Selected patterns and probability weights used for RCP 4.5

Quantile Model Weight 2080–2099 global �T (C) 2080–2099 CONUS �P (%)
0.04 scaled gfdl-esm2g 0.04 0.93 4.63
0.07 gfdl-esm2g 0.04 0.99 4.93
0.09 fio-esm 0.02 1.03 1.64
0.10 scaled gfdl-esm2m 0.02 1.03 2.37
0.17 gfdl-esm2m 0.03 1.17 2.70
0.18 giss-e2-r-cc 0.03 1.17 1.98
0.20 giss-e2-r 0.03 1.19 2.02
0.21 inmcm4 0.05 1.21 7.65
0.25 fgoals-g2 0.05 1.31 2.89
0.29 giss-e2-h-cc 0.05 1.36 6.51
0.37 bcc-csm1-1-m 0.05 1.49 -4.01
0.41 cesm1-bgc 0.02 1.56 4.52
0.42 bcc-csm1-1 0.02 1.57 4.23
0.44 mpi-esm-lr 0.02 1.62 5.52
0.45 noresm1-m 0.02 1.60 5.92
0.45 ipsl-cm5b-lr 0.02 1.62 9.24
0.45 ccsm4 0.02 1.62 6.16
0.45 mri-cgcm3 0.02 1.63 10.28
0.46 noresm1-me 0.02 1.67 1.67
0.48 mpi-esm-mr 0.02 1.68 4.53
0.48 miroc5 0.02 1.71 0.34
0.58 cnrm-cm5 0.02 1.88 6.97
0.70 access1-3 0.02 2.10 9.22
0.71 cmcc-cm 0.02 2.14 0.21
0.71 bnu-esm 0.02 2.13 1.06
0.72 ipsl-cm5a-lr 0.02 2.17 -2.60
0.74 access1-0 0.02 2.21 3.10
0.74 ipsl-cm5a-mr 0.02 2.23 -4.01
0.74 csiro-mk3-6-0 0.02 2.24 13.46
0.77 canesm2 0.02 2.30 13.32
0.78 hadgem2-cc 0.02 2.31 2.77
0.78 cesm1-cam5 0.02 2.30 6.44
0.79 hadgem2-ao 0.02 2.36 -1.42
0.82 miroc-esm 0.02 2.46 4.19
0.84 hadgem2-es 0.02 2.55 8.15
0.85 miroc-esm-chem 0.02 2.53 11.40
0.88 gfdl-cm3 0.02 2.70 10.00
0.90 scaled miroc-esm-chem 0.02 2.80 12.58
0.90 scaled hadgem2-ao 0.02 2.80 -1.68
0.95 scaled miroc-esm-chem 0.03 3.23 14.51
0.95 scaled hadgem2-ao 0.03 3.23 -1.94
0.99 scaled miroc-esm-chem 0.01 4.12 18.54
0.99 scaled hadgem2-ao 0.01 4.12 -2.47
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Table A4: Selected patterns and probability weights used for RCP 6.0

Quantile Model Weight 2080–2099 global �T (C) 2080–2099 CONUS �P (%)
0.04 scaled gfdl-esm2m 0.04 1.31 2.22
0.04 scaled fio-esm 0.04 1.31 -0.78
0.10 scaled gfdl-esm2m 0.02 1.42 2.42
0.10 scaled fio-esm 0.02 1.42 -0.85
0.15 gfdl-esm2g 0.04 1.50 2.40
0.18 fio-esm 0.04 1.56 -0.93
0.24 giss-e2-r 0.07 1.62 3.23
0.25 gfdl-esm2m 0.07 1.66 2.82
0.36 noresm1-m 0.07 1.85 7.76
0.41 noresm1-me 0.05 1.94 4.27
0.43 bcc-csm1-1 0.05 1.96 5.09
0.44 miroc5 0.05 1.98 1.39
0.49 ccsm4 0.05 2.11 8.42
0.65 csiro-mk3-6-0 0.04 2.41 1.45
0.67 hadgem2-ao 0.04 2.49 -1.54
0.69 ipsl-cm5a-lr 0.04 2.55 -1.53
0.72 ipsl-cm5a-mr 0.04 2.61 -5.75
0.78 cesm1-cam5 0.04 2.76 17.36
0.82 miroc-esm 0.02 2.93 10.84
0.85 miroc-esm-chem 0.02 3.03 9.40
0.86 hadgem2-es 0.02 3.06 6.42
0.87 gfdl-cm3 0.02 3.10 11.80
0.90 scaled miroc-esm-chem 0.02 3.25 10.08
0.90 scaled hadgem2-es 0.02 3.25 6.83
0.95 scaled miroc-esm-chem 0.03 3.79 11.74
0.95 scaled hadgem2-es 0.03 3.79 7.95
0.99 scaled miroc-esm-chem 0.01 4.47 13.87
0.99 scaled hadgem2-es 0.01 4.47 9.40
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Table A5: Selected patterns and probability weights used for RCP 8.5

Quantile Model Weight 2080–2099 global �T (C) 2080–2099 CONUS �P (%)
0.04 scaled giss-e2-r 0.04 2.26 8.37
0.04 scaled inmcm4 0.04 2.26 1.58
0.10 scaled giss-e2-r 0.02 2.43 9.00
0.10 scaled inmcm4 0.02 2.43 1.70
0.12 giss-e2-r 0.03 2.50 9.26
0.14 inmcm4 0.03 2.58 1.81
0.18 gfdl-esm2m 0.03 2.64 5.29
0.22 gfdl-esm2g 0.05 2.77 7.20
0.33 fgoals-g2 0.05 3.03 1.52
0.39 noresm1-m 0.05 3.14 6.60
0.40 mri-cgcm3 0.05 3.19 13.38
0.43 bcc-csm1-1-m 0.02 3.24 4.85
0.45 miroc5 0.02 3.31 -0.33
0.46 ipsl-cm5b-lr 0.02 3.33 9.32
0.46 noresm1-me 0.02 3.32 2.98
0.47 bcc-csm1-1 0.02 3.34 2.00
0.50 fio-esm 0.02 3.42 6.50
0.50 cnrm-cm5 0.02 3.47 11.10
0.51 cesm1-bgc 0.02 3.48 6.61
0.51 mpi-esm-mr 0.02 3.52 5.63
0.53 mpi-esm-lr 0.02 3.55 5.33
0.53 ccsm4 0.02 3.59 5.39
0.64 access1-3 0.01 3.96 15.44
0.65 csiro-mk3-6-0 0.01 3.97 11.92
0.66 hadgem2-ao 0.01 4.04 2.02
0.66 access1-0 0.01 4.05 0.81
0.67 cesm1-cam5 0.01 4.04 10.92
0.69 cmcc-cm 0.01 4.14 5.39
0.71 bnu-esm 0.01 4.27 3.41
0.73 ipsl-cm5a-mr 0.01 4.36 -10.46
0.75 canesm2 0.01 4.41 22.06
0.75 ipsl-cm5a-lr 0.01 4.43 -5.31
0.78 hadgem2-cc 0.01 4.60 5.97
0.78 gfdl-cm3 0.01 4.61 12.92
0.78 miroc-esm 0.01 4.62 5.09
0.78 hadgem2-es 0.01 4.63 6.94
0.83 miroc-esm-chem 0.04 4.90 4.90
0.84 scaled miroc-esm-chem 0.04 4.93 4.93
0.90 scaled gfdl-cm3 0.02 5.45 15.26
0.90 scaled miroc-esm-chem 0.02 5.45 5.45
0.95 scaled gfdl-cm3 0.03 6.20 17.35
0.95 scaled miroc-esm-chem 0.03 6.20 6.20
0.99 scaled gfdl-cm3 0.01 8.07 22.59
0.99 scaled miroc-esm-chem 0.01 8.07 8.07
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Table A6: Average annual temperature anomaly (�C) for both weighted and un-weighted distributions

RCP 8.5 2040–2059 anomaly (��C) 2080–2099 anomaly (��C)
Region 1981–2010 (�C) Method 50 17–83 5–95 50 17–83 5–95
CONUS 11.9 unweighted 4.4 3.1–5.5 2.6–6.4 9.2 6.4–10.6 5.9–12.4

weighted 4.4 2.6–5.8 2.5–6.4 9.4 6.1–12.4 5.7–14.3
Northeast 8.8 unweighted 4.5 3.5–5.6 2.9–6.9 9.3 6.8–11.4 6.4–12.7

weighted 4.5 3.0–6.4 2.4–7.0 9.3 6.6–12.8 5.5–15.9
Southeast 16.8 unweighted 3.9 2.9–4.6 2.3–5.3 8.0 6.4–9.4 4.9–10.7

weighted 3.9 2.4–5.1 2.0–5.7 8.1 5.4–10.8 4.9–13.1
N. Great Plains 7.2 unweighted 4.7 3.1–5.9 2.2–7.0 9.6 6.6–11.1 5.7–13.5

weighted 4.7 2.9–6.4 2.5–7.0 9.7 6.0–13.5 5.7–15.1
S. Great Plains 16.8 unweighted 4.5 3.0–5.1 2.6–5.7 8.8 6.9–10.4 6.0–11.4

weighted 4.5 2.9–5.2 2.4–6.0 8.9 6.2–11.4 5.8–13.9
Midwest 9 unweighted 4.9 3.4–6.0 2.9–7.4 9.7 6.8–11.7 6.2–14.2

weighted 5.0 3.0–6.8 2.8–7.4 10.2 6.3–14.2 6.1–15.7
Northwest 8.8 unweighted 4.1 3.0–5.3 2.3–6.5 8.1 6.1–10.7 5.8–12.2

weighted 4.2 2.3–6.0 2.2–6.6 8.1 5.8–12.2 4.9–13.6
Southwest 12.4 unweighted 4.5 3.2–5.5 2.6–6.2 8.6 6.9–10.7 6.2–12.5

weighted 4.5 2.7–5.7 2.4–6.2 8.6 6.4–12.5 5.9–14.4
Alaska -1.7 unweighted 5.7 3.9–7.2 3.6–8.6 10.5 7.7–14.8 6.6–16.2

weighted 5.8 3.9–8.0 2.4–9.1 11.4 7.7–16.3 6.6–19.1
Hawaii 23.6 unweighted 2.5 1.8–3.4 1.6–4.0 5.0 4.1–7.4 3.7–8.1

weighted 2.6 1.6–3.6 1.2–4.4 5.2 3.7–7.7 3.3–9.4

Table A7: Weighted and unweighted regional average winter precipitation change (�%)

DJF RCP 8.5 2040–2059 change (�%) 2080–2099 change (�%)
Region 1981–2010 (mm) Method 50 17–83 5–95 50 17–83 5–95
CONUS 159.7 unweighted 7.0 -1.4–10.3 -3.8–15.5 11.2 1.6–24.2 -9.5–29.2

weighted 2.5 -2.0–10.1 -2.9–15.5 7.3 -1.4–21.4 -1.7–25.6
Northeast 228.4 unweighted 12.6 3.1–17.5 -14.5–23.9 23.3 8.6–33.9 1.7–44.4

weighted 4.4 -1.4–16.7 -2.5–23.9 15.8 -0.8–33.0 -1.8–37.8
Southeast 323.4 unweighted 4.0 -3.4–11.4 -12.9–14.5 3.8 -6.3–21.9 -22.9–32.7

weighted -0.3 -3.4–9.8 -9.3–14.5 -0.9 -2.3–16.2 -14.9–31.4
N. Great Plains 40.6 unweighted 19.7 8.0–27.6 -11.6–37.6 37.8 24.2–55.4 13.9–70.6

weighted 17.5 -1.1–27.6 -2.6–37.6 33.7 -0.2–49.7 -1.6–70.6
S. Great Plains 121.6 unweighted -0.9 -12.4–9.4 -13.4–12.6 -2.3 -18.7–15.9 -34.6–24.2

weighted -1.5 -11.0–7.0 -13.0–11.7 -1.4 -11.8–10.5 -25.9–22.8
Midwest 135.0 unweighted 9.9 3.2–17.3 -7.0–28.0 21.7 10.1–35.1 -11.1–39.8

weighted 6.7 -1.5–14.3 -6.1–28.0 17.0 -0.5–32.3 -1.4–35.5
Northwest 241.6 unweighted 9.3 -1.7–14.9 -13.4–19.9 13.7 -1.4–26.5 -15.1–42.1

weighted 4.0 -2.1–12.3 -10.7–19.9 5.5 -2.4–26.5 -14.4–42.1
Southwest 110.4 unweighted 5.5 -8.8–15.5 -14.9–30.3 13.3 -5.2–37.5 -19.3–54.8

weighted -0.9 -6.2–12.8 -14.9–30.3 1.2 -2.7–36.0 -19.3–51.6
Alaska 105.8 unweighted 12.1 3.2–21.2 0.4–27.7 30.6 15.0–42.1 5.6–65.2

weighted 6.0 -1.5–20.6 -1.6–25.0 15.5 0.3–40.4 -1.4–65.2
Hawaii 601.1 unweighted -7.1 -16.9–5.2 -21.2–10.2 -3.9 -13.8–8.4 -28.3–28.0

weighted -3.3 -15.6–2.3 -21.2–5.8 -3.1 -13.0–6.7 -28.3–16.4
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Table A8: Weighted and unweighted regional average spring precipitation change (�%)

MAM RCP 8.5 2040–2059 change (�%) 2080–2099 change (�%)
Region 1981–2010 (mm) Method 50 17–83 5–95 50 17–83 5–95
CONUS 196.1 unweighted 6.6 2.6–12.5 -3.2–16.1 10.7 2.2–17.6 -5.0–22.2

weighted 5.0 0.6–10.6 0.3–15.2 7.0 0.7–15.8 -3.3–18.7
Northeast 277.5 unweighted 10.1 3.6–16.4 -3.9–18.8 15.7 10.5–24.5 5.9–32.7

weighted 7.2 0.2–15.2 -3.9–17.1 12.9 1.0–23.4 0.4–30.3
Southeast 327.9 unweighted 6.3 -3.5–14.6 -8.5–18.0 7.7 -8.6–16.9 -18.7–28.1

weighted 2.6 0.3–11.7 -7.8–17.7 1.3 -2.7–16.9 -18.7–26.2
N. Great Plains 133.7 unweighted 16.4 7.9–21.6 -2.0–36.7 26.1 12.8–37.7 -1.6–63.4

weighted 14.5 1.4–19.5 0.7–36.7 19.0 2.5–35.1 1.1–63.4
S. Great Plains 210.2 unweighted 2.5 -4.0–9.6 -16.4–15.3 -0.6 -12.9–9.8 -16.7–14.6

weighted 0.7 -3.2–6.0 -10.5–15.3 -0.1 -9.3–8.0 -13.8–14.6
Midwest 250.7 unweighted 12.3 6.6–18.4 1.5–21.1 20.5 11.7–30.7 7.2–36.7

weighted 8.5 0.8–16.6 0.5–21.1 16.0 1.4–28.6 0.8–36.7
Northwest 170.4 unweighted 6.6 -3.0–12.8 -7.8–20.9 7.3 0.2–16.1 -8.4–24.5

weighted 1.4 -1.8–11.0 -5.9–16.2 4.8 0.3–13.7 -3.4–24.5
Southwest 83.4 unweighted -1.4 -12.5–9.5 -18.1–24.1 -10.8 -19.5–2.1 -23.6–11.6

weighted 0.1 -9.1–6.4 -18.1–12.5 -2.8 -17.9–0.5 -22.3–9.0
Alaska 80.7 unweighted 15.9 7.2–28.4 2.4–34.8 38.6 23.0–53.9 9.3–70.9

weighted 11.1 0.5–21.6 0.3–33.1 35.6 1.6–52.0 1.1–60.7
Hawaii 586.1 unweighted -0.3 -18.1–13.5 -25.9–19.1 -4.2 -23.8–19.8 -34.7–32.7

weighted -0.5 -18.1–8.0 -25.9–18.9 -0.9 -21.3–8.9 -34.7–25.5

Table A9: Weighted and unweighted regional average summer precipitation change (�%)

JJA RCP 8.5 2040–2059 change (�%) 2080–2099 change (�%)
Region 1981–2010 (mm) Method 50 17–83 5–95 50 17–83 5–95
CONUS 212.5 unweighted 0.1 -6.5–5.8 -15.5–8.3 -0.3 -13.4–5.4 -22.1–9.9

weighted -0.2 -3.8–4.4 -8.4–7.8 -0.3 -8.3–3.3 -17.2–9.9
Northeast 309.5 unweighted 2.2 -2.3–8.8 -4.1–12.7 2.3 -4.7–18.7 -6.8–26.2

weighted 0.3 -0.7–8.0 -3.0–12.7 0.3 -2.1–12.3 -5.8–26.2
Southeast 365.5 unweighted 2.6 -7.7–10.5 -14.2–19.1 -2.4 -14.5–12.4 -21.5–18.1

weighted 0.2 -5.3–5.9 -14.2–11.9 -0.5 -13.7–11.5 -17.1–16.1
N. Great Plains 167.2 unweighted -5.2 -13.4–4.2 -20.0–19.1 -10.8 -23.3–3.3 -36.0–12.3

weighted -0.5 -10.2–2.8 -19.7–8.5 -3.5 -22.2–2.2 -25.8–12.3
S. Great Plains 237.4 unweighted -1.6 -8.9–6.0 -18.3–13.7 -7.0 -20.2–5.5 -23.5–13.2

weighted -0.1 -8.4–4.6 -16.8–9.0 -0.5 -18.4–1.5 -21.7–12.5
Midwest 304.2 unweighted -3.2 -9.3–7.2 -17.1–12.9 -3.9 -16.8–7.6 -29.8–12.8

weighted -0.3 -6.7–6.5 -11.0–8.9 -0.2 -10.3–5.9 -21.4–11.8
Northwest 73.1 unweighted -5.4 -22.5–7.5 -28.6–18.4 -15.6 -31.5–3.9 -55.8–29.0

weighted -1.1 -18.3–1.9 -24.6–8.4 -5.0 -29.4—0.3 -49.1–14.4
Southwest 78.3 unweighted 3.7 -8.9–15.9 -21.4–22.3 1.4 -20.8–23.3 -28.4–34.6

weighted 0.9 -2.1–12.4 -16.7–19.0 1.0 -10.0–20.3 -26.9–31.5
Alaska 184.7 unweighted 14.8 9.0–20.8 4.4–25.8 28.9 18.2–40.6 12.2–64.0

weighted 12.5 0.7–18.5 0.6–22.9 22.1 1.9–38.0 0.5–57.0
Hawaii 472.8 unweighted -0.1 -14.1–18.3 -30.8–29.7 -3.6 -15.2–22.3 -37.6–49.0

weighted -0.2 -8.7–12.1 -30.8–22.2 -0.5 -12.8–17.4 -37.6–45.5
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Table A10: Weighted and unweighted regional average autumn precipitation change (�%)

SON RCP 8.5 2040–2059 change (�%) 2080–2099 change (�%)
Region 1981–2010 (mm) Method 50 17–83 5–95 50 17–83 5–95
CONUS 182.0 unweighted 3.8 -0.4–8.7 -2.0–10.8 5.8 -1.9–10.9 -7.0–19.9

weighted 2.2 -0.2–7.9 -2.0–10.2 3.3 -0.1–8.9 -7.0–18.8
Northeast 288.2 unweighted 3.9 -3.4–9.6 -5.4–13.7 6.9 -0.6–13.5 -9.0–15.9

weighted 1.3 -0.2–6.5 -4.4–10.5 3.1 -0.2–12.0 -9.0–13.9
Southeast 306.0 unweighted 6.3 -1.7–16.5 -6.4–18.5 9.1 0.1–20.3 -15.6–27.7

weighted 3.9 -0.0–12.6 -6.4–17.7 3.7 0.1–18.4 -15.6–26.6
N. Great Plains 93.1 unweighted 4.4 -3.4–11.8 -8.9–20.3 9.5 -3.1–15.6 -10.1–35.0

weighted 0.9 -0.8–11.8 -8.8–20.3 2.0 -0.5–12.0 -8.9–23.9
S. Great Plains 201.9 unweighted 3.5 -7.9–11.0 -11.4–16.5 1.8 -15.6–13.0 -23.7–25.3

weighted -0.1 -7.0–8.9 -11.4–15.0 0.0 -15.6–5.7 -23.7–22.5
Midwest 233.4 unweighted 5.1 -1.2–9.3 -10.4–12.7 6.5 -1.5–12.7 -13.4–16.7

weighted 2.2 -0.4–8.2 -4.5–12.7 3.5 -0.2–11.0 -13.4–16.0
Northwest 168.4 unweighted 2.3 -10.5–14.6 -12.1–16.7 9.2 -6.9–18.5 -12.9–27.6

weighted 0.1 -7.4–13.8 -11.9–16.7 0.9 -3.9–15.7 -12.0–20.3
Southwest 80.3 unweighted -1.6 -9.3–11.8 -22.4–19.6 -1.7 -9.6–13.8 -27.6–24.2

weighted -0.0 -6.3–7.5 -17.5–18.6 0.1 -8.9–11.6 -17.9–17.7
Alaska 170.1 unweighted 16.1 10.4–21.6 5.0–27.4 32.4 25.4–40.1 22.6–48.2

weighted 11.7 0.7–18.5 0.2–26.5 31.2 1.4–36.8 0.9–41.3
Hawaii 627.7 unweighted 5.1 -8.2–21.0 -17.9–26.2 13.3 -2.5–43.8 -15.4–64.0

weighted 1.0 -1.6–15.4 -17.9–26.2 5.1 -0.3–35.8 -15.4–44.3

Table A11: Weighted and unweighted projections of expected regional average (population-weighted) Category II+ ACP Humid
Heat Stroke Index days per summer

RCP 8.5 2020–2039 2040–2059 2080–2099 2120–2139 2140–2159 2180–2199
Region 1981–2010 Method
CONUS 4.65 weighted 10.21 17.21 34.93 49.88 54.42 60.01

unweighted 10.36 16.83 33.59 49.1 53.83 59.73
Northeast 3.25 weighted 8.11 16.15 39.47 60.73 66.81 74.18

unweighted 8.28 15.65 37.81 60.72 67.3 75.75
Southeast 8.24 weighted 18.52 30.49 56.73 74.05 78.68 83.36

unweighted 18.82 29.87 55.63 74.4 79.43 84.45
N. Great Plains 1.45 weighted 3.16 5.58 14.28 25.25 30.09 36.79

unweighted 3.18 5.41 12.91 22.63 27.27 33.98
S. Great Plains 8.85 weighted 14.9 19.92 30.06 38.54 41.42 45.33

unweighted 14.91 19.63 29.23 37.03 39.69 43.38
Midwest 4.82 weighted 11.37 19.96 42.81 62.77 68.37 75.27

unweighted 11.57 19.53 40.69 61.94 68.26 76
Northwest 0.16 weighted 0.52 1.48 9.66 23.68 30.27 39.17

unweighted 0.5 1.36 7.5 20.13 26.96 36.9
Southwest 0.05 weighted 0.11 0.26 1.5 4.78 6.75 10.3

unweighted 0.1 0.23 0.96 2.83 4.05 6.53
Alaska 0 weighted 0 0 0.18 3.92 7.77 15.36

unweighted 0 0 0.06 1.39 3.17 8.44
Hawaii 1.63 weighted 6.76 16.89 48.26 67.16 70.95 75.92

unweighted 7.16 16.14 47.14 68.53 72.88 77.12
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Table A12: Weighted and unweighted projections of expected regional average (population-weighted) Category III+ ACP Humid
Heat Stroke Index days per summer

RCP 8.5 2020–2039 2040–2059 2080–2099 2120–2139 2140–2159 2180–2199
Region 1981–2010 Method
CONUS 0.03 weighted 0.17 0.75 7.49 21.82 28.22 37.15

unweighted 0.17 0.65 5.35 18.04 24.8 35.13
Northeast 0.05 weighted 0.22 1.03 9.82 29.47 38.1 49.93

unweighted 0.23 0.87 7.12 25.25 34.53 48.68
Southeast 0.01 weighted 0.08 0.48 8.8 28.22 36.92 49.49

unweighted 0.09 0.4 5.57 22.64 32.19 47.38
N. Great Plains 0.02 weighted 0.1 0.33 2.99 10.08 14.05 20.22

unweighted 0.1 0.3 2.09 7.16 10.6 16.34
S. Great Plains 0.01 weighted 0.04 0.15 2.48 9.22 12.43 17.29

unweighted 0.04 0.12 1.37 6.55 9.74 15.04
Midwest 0.08 weighted 0.49 1.95 14.23 34.62 42.87 53.54

unweighted 0.49 1.73 11.31 30.34 39.48 51.91
Northwest 0 weighted 0.01 0.07 1.73 9.3 14.56 22.52

unweighted 0.01 0.06 0.88 5.43 9.74 17.61
Southwest 0 weighted 0.01 0.02 0.18 1.35 2.27 3.82

unweighted 0.01 0.02 0.07 0.37 0.71 1.54
Alaska 0 weighted 0 0 0 1.38 2.55 5.93

unweighted 0 0 0 0.09 0.3 1.39
Hawaii 0 weighted 0 0.01 3.1 18.73 27.22 36.62

unweighted 0 0.01 1.02 11.94 20.94 33.12

Table A13: Weighted and unweighted projections of expected regional average (population-weighted) Category IV ACP Humid
Heat Stroke Index days per summer

RCP 8.5 2020–2039 2040–2059 2080–2099 2120–2139 2140–2159 2180–2199
Region 1981–2010 Method
CONUS 0 weighted 0 0.01 0.79 6.27 10.23 17.13

unweighted 0 0.01 0.29 2.79 5.47 11.54
Northeast 0 weighted 0 0.01 1.14 9 14.87 24.92

unweighted 0 0.01 0.36 3.93 8.24 18.23
Southeast 0 weighted 0 0 0.36 5.54 9.88 18.26

unweighted 0 0 0.08 1.54 3.67 9.75
N. Great Plains 0 weighted 0 0 0.24 2.82 4.89 8.89

unweighted 0 0 0.07 0.9 2 4.76
S. Great Plains 0 weighted 0 0 0.05 1.17 2.11 4.15

unweighted 0 0 0.01 0.14 0.38 1.25
Midwest 0 weighted 0 0.02 2.22 13.35 20.07 30.47

unweighted 0 0.02 0.96 7.65 13.41 24.2
Northwest 0 weighted 0 0 0.18 2.9 5.51 11.29

unweighted 0 0 0.05 0.71 1.94 5.75
Southwest 0 weighted 0 0 0.02 0.41 0.83 1.58

unweighted 0 0 0.01 0.04 0.09 0.27
Alaska 0 weighted 0 0 0 0.73 1.51 2.3

unweighted 0 0 0 0 0.01 0.1
Hawaii 0 weighted 0 0 0.01 2.43 4.99 12.03

unweighted 0 0 0 0.08 0.42 3.92
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Figure A6: Annual surface temperature patterns for each CMIP5 model for RCP 8.5.
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Figure A6: (con’t)
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Figure A6: (con’t)
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Figure A7: Annual daily precipitation rate patterns for each CMIP5 model.
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Figure A7: (con’t)
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Figure A7: (con’t)
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A.2. Sea-level rise projections

The sea-level rise projections used in this analysis are described in depth in Kopp et al. (2014). We briefly
summarize key elements of the methodology.

At a globally-averaged scale, sea-level change is driven primarily by changes in the amount of heat stored in
the ocean (thermal expansion) and the amount of ice stored in glaciers and ice sheets. Smaller contributions
to sea-level change are made by human-induced changes in the amount of water stored on land, through
groundwater extraction and dam construction.

For impact analysis, it is important to estimate not just global mean sea-level (GMSL) change but also
local sea-level change, as the impacts are experienced at particularly localities, not the global mean. Local
sea-level (LSL) change differs from GMSL change due to numerous effects, including:

• ocean dynamics and ‘steric’ variations in the temperature and salinity of the ocean,

• changes in Earth’s gravitational field and rotation and flexure of the Earth’s lithosphere due to the
redistribution of mass between land ice and the ocean (known as static-equilibrium effects),

• land motion and other effects associated with the ongoing response to the redistribution of mass since
the end of the last ice age (known as glacial isostatic adjustment, GIA), and

• non-climatic effects, such as tectonics and sediment compaction due to both natural processes and fluid
(groundwater or hydrocarbon) withdrawal.

Figure A8 summarizes the process used in constructing the sea-level rise projections for each RCP.
Projected sea-level rise due to thermal expansion, ocean dynamics, and steric effects (known here collec-

tively as oceanographic effects) is based upon the projections of the CMIP5 models. One realization was
used from each available model (Table A14), and each model was treated as an equally likely sample from an
underlying normal distribution. Changes in the mass balance of glaciers were also indirectly based upon the
CMIP5 models, via the surface mass balance model of Marzeion et al. (2012). The projections of Marzeion
et al. (2012) for each CMIP5 model were similarly treated as equally likely samples from an underlying normal
distributions.

Projections of changes in the Greenland and Antarctic ice sheets were assumed to follow log-normal
distributions, with likely (17th to 83rd percentile) ranges from IPCC AR5 (Church et al., 2013). As AR5
does not provide estimates beyond the 17th–83rd percentiles, the ratio of the 95th-to-83rd and 5th-to-17th
percentiles from the expert elicitation study of Bamber and Aspinall (2013) were used to set the shape of the
tail projections.

Estimates of GMSL change due to human-caused changes in land water storage are based on models of
the relationship between total global population, impoundment of water in dams, and groundwater depletion
(Chao et al., 2008; Wada et al., 2012; Konikow , 2011).

Background rates of GIA and non-climatic process were estimated from tide-gauge data using a Gaussian
process model similar to that employed by Kopp (2013). Note that this approach assumes that background
rates of sea-level change will continue unchanged; to the extent that these result from human activities, such
as hydrocarbon extraction in western Gulf states, economic and policy changes can decrease or increase these
rates in a fashion for which our projections do not account.

We combine probability distributions for the different components contributing to sea-level rise to con-
struct sea-level rise projections for RCP 8.5, RCP 4.5, and RCP 2.6. We do not construct projections for
RCP 6.0, as sea-level rise in RCP 4.5 and RCP 6.0 are indistinguishable in the 21st century (Church et al.,
2013), and insufficient model output is available to extend RCP 6.0 projections for oceanographic and glacial
beyond 2100.

Our local sea-level rise projections (Table A15) can be compared with those of other sources. For example,
under RCP 8.5, we project that sea-level at New York City will likely rise over the 21st century by between
0.7 and 1.3 m (2.1–4.2 ft), and very likely rise between 0.4 and 1.5 m (1.4–5.1 ft). By comparison, Miller
et al. (2013)’s ‘low’ projection is 70 cm (comparable to our 17th percentile for RCP 8.5), their ’central’
projection is 1.0 m (comparable to our 50th percentile), their ‘high’ projection is 1.4 cm (comparable to our
90th percentile), and their ‘higher’ projection is 1.6 m (comparable to our 97th percentile). We project a
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1-in-200 probability that New York City will experience more than 2.1 m (6.9 ft) of sea-level rise, and a
1-in-1000 probability it will experience more than 3.1 m (9.9 ft).

Our 1-in-1000 probability GMSL projection for RCP 8.5, 2.5 m (8 ft) in 2100, is similar to other estimates
of the maximum sea-level rise physically possible in the current century (e.g., Miller et al., 2013; Church et al.,
2013). Accordingly, we interpret 1-in-1000 probability projections as the maximum physically plausible.
Such high sea-level rise requires a fairly rapid collapse of the West Antarctic Ice Sheet (WAIS) (Little et al.,
2013) following its destabilization by effects such as grounding line retreat feedbacks (Schoof , 2007; Gomez
et al., 2012, 2013) or ice-cliff collapse feedbacks (Bassis and Walker , 2012; Pollard and DeConto, 2013).
Observations indicate that WAIS may already have been destabilized (Rignot et al., 2014; Joughin et al.,
2014), but do not yet suggest that the ensuing collapse will occur at the rates needed to reach the maximum-
plausible 21st century sea-level rise. Other users may have alternative assessments of the likely rate of
collapse, which may render high-end outcomes more likely than we estimate.

Expert assessment

Climate models

Continuation of
historical trends

Ice sheets

Glaciers

Non-climatic
background

Land water
storage

Thermal expansion
and ocean dynamics

Local
sea level

Physical model
of local effects

Expert elicitation

Historical demand/
population
relationship

Figure A8: Flow of sea-level rise projection construction.
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Table A14: CMIP5 models used for sea-level projections

Model Oceanographic effects Glaciers
RCP 8.5 RCP 4.5 RCP 2.6 RCP 8.5 RCP 4.5 RCP 2.6

access1-0 1 1
access1-3 1 1

bcc-csm1-1 2 2 2 2 2 2
bcc-csm1-1-m 1 1 1

canesm2 1 2 2 1 2 2
ccsm4 1 1 1 1 1 1

cmcc-cesm 1
cmcc-cm 1 1

cmcc-cms 1 1
cnrm-cm5 2 2 1 2 2 1

csiro-mk3-6-0 1 1 1 2 2 1
gfdl-cm3 1 2 1 1 1 1

gfdl-esm2g 1 1 1
gfdl-esm2m 1 1 1

giss-e2-r 2 2 2 2 2
giss-e2-r-cc 1 1
hadgem2-cc 1
hadgem2-es 1 2 2 2 2

inmcm4 1 1 1 1
ipsl-cm5a-lr 2 2 2 2 2 2

ipsl-cm5a-mr 1 2 1
miroc-esm 1 2 1 1 1 1

miroc-esm-chem 1 1 1
miroc5 1 1 1 1

mpi-esm-lr 2 2 2 2 2 2
mpi-esm-mr 1 1 1

mri-cgcm3 1 1 1 1 1
noresm1-m 1 2 1 1 2 1

noresm1-me 1 1 1
1 = to 2100, 2 = to 2200.
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Table A15: Sea-level rise projections
Feet above 2000 RCP 8.5 RCP 4.5 RCP 2.6

Likely 90% range 99% range 1-in-1000 Likely 90% range 99% range 1-in-1000 Likely 90% range 99% range 1-in-1000
GLOBAL

2030 0.4–0.5 0.3–0.6 0.3–0.7 0.8 0.4–0.5 0.3–0.6 0.3–0.7 0.7 0.4–0.5 0.3–0.6 0.3–0.7 0.7
2050 0.8–1.1 0.7–1.3 0.5–1.6 2.0 0.7–1.0 0.6–1.1 0.5–1.4 1.9 0.7–0.9 0.6–1.1 0.5–1.4 1.8
2100 2.0–3.3 1.7–4.0 1.3–5.8 8.1 1.5–2.5 1.2–3.1 0.8–4.8 7.1 1.2–2.1 0.9–2.7 0.6–4.6 6.9
2150 3.2–5.9 2.6–7.6 1.8–12.1 17.8 2.0–4.3 1.4–5.7 0.7–10.0 15.6 1.5–3.5 1.1–4.9 0.7–9.6 15
2200 4.4–9.2 3.2–12.3 2.0–20.7 31.1 2.4–6.4 1.3–8.9 0.2–16.9 27.3 1.7–5.3 0.9–7.8 0.2–16.4 26.5

PORTLAND, ME
2030 0.4–0.8 0.2–0.9 0.0–1.2 1.3 0.4–0.7 0.2–0.8 0.1–1.0 1.1 0.3–0.8 0.2–0.9 0.0–1.1 1.3
2050 0.7–1.4 0.4–1.7 0.1–2.2 2.5 0.6–1.3 0.4–1.5 0.1–2.0 2.3 0.5–1.3 0.3–1.6 -0.1–2.1 2.4
2100 1.7–3.8 1.0–4.6 0.1–6.6 9.4 1.3–2.9 0.7–3.6 0.0–5.5 7.9 0.9–2.4 0.4–3.1 -0.3–5.2 7.6
2150 3.1–5.7 2.4–7.2 1.5–12.9 18.7 1.7–4.4 0.8–5.9 -0.3–11.2 16.5 1.3–3.3 0.8–4.9 0.3–10.5 16.4
2200 4.0–8.3 2.9–11.1 1.6–21.4 32.1 1.8–6.2 0.6–8.9 -0.9–18.8 28.4 1.1–4.8 0.5–7.8 -0.3–18.2 28.4

BOSTON, MA
2030 0.4–0.9 0.3–1.0 0.1–1.2 1.4 0.4–0.8 0.3–0.9 0.1–1.1 1.2 0.4–0.8 0.3–1.0 0.0–1.2 1.3
2050 0.8–1.6 0.6–1.8 0.2–2.3 2.6 0.8–1.4 0.5–1.7 0.2–2.1 2.4 0.7–1.4 0.4–1.7 0.0–2.2 2.6
2100 2.0–4.0 1.3–4.9 0.4–6.8 9.7 1.5–3.1 1.0–3.8 0.3–5.8 8.2 1.2–2.6 0.7–3.3 0.0–5.4 7.9
2150 3.5–6.1 2.8–7.6 2.0–13.3 19.3 2.1–4.8 1.2–6.3 0.1–11.7 17 1.6–3.7 1.2–5.3 0.7–10.9 16.8
2200 4.5–8.9 3.5–11.8 2.2–22.2 33 2.4–6.7 1.1–9.5 -0.4–19.4 29 1.7–5.4 1.0–8.3 0.3–18.8 29.0

NEWPORT, RI
2030 0.4–0.9 0.3–1.1 0.0–1.3 1.5 0.5–0.8 0.4–0.9 0.2–1.1 1.2 0.4–0.8 0.3–1.0 0.1–1.2 1.3
2050 0.9–1.6 0.6–1.9 0.3–2.3 2.6 0.8–1.5 0.6–1.7 0.3–2.1 2.4 0.7–1.4 0.5–1.7 0.1–2.2 2.5
2100 2.1–4.1 1.4–5.0 0.5–6.9 9.9 1.6–3.2 1.1–3.9 0.3–5.9 8.3 1.2–2.7 0.8–3.4 0.1–5.5 8.0
2150 3.7–6.3 3.0–7.8 2.0–13.6 19.7 2.2–5.0 1.3–6.5 0.2–11.9 17.2 1.8–3.9 1.3–5.5 0.7–11.1 17.1
2200 4.7–9.2 3.6–12.1 2.3–22.5 33.6 2.5–7.0 1.3–9.7 -0.3–19.7 29.4 1.8–5.6 1.1–8.5 0.4–19.1 29.3

NEW YORK, NY
2030 0.4–1.0 0.2–1.2 0.0–1.4 1.6 0.5–0.8 0.4–1.0 0.2–1.1 1.2 0.4–0.9 0.3–1.0 0.1–1.2 1.4
2050 0.9–1.6 0.6–1.9 0.3–2.4 2.7 0.9–1.5 0.6–1.7 0.3–2.2 2.5 0.8–1.5 0.5–1.7 0.2–2.2 2.5
2100 2.1–4.2 1.4–5.1 0.5–6.9 9.9 1.7–3.3 1.1–4.0 0.4–6.0 8.3 1.3–2.8 0.9–3.5 0.2–5.6 8.0
2150 3.7–6.5 2.9–8.0 1.8–13.7 20 2.3–5.1 1.4–6.7 0.3–11.9 17.1 1.9–4.0 1.4–5.6 0.8–11.1 16.9
2200 4.9–9.5 3.8–12.3 2.3–22.6 33.6 2.7–7.2 1.5–9.9 -0.1–19.7 29.4 2.0–5.7 1.3–8.7 0.6–19.0 29.1

ATLANTIC CITY, NJ
2030 0.6–1.0 0.4–1.1 0.2–1.3 1.5 0.6–0.9 0.5–1.0 0.3–1.2 1.3 0.5–1.0 0.4–1.1 0.2–1.3 1.5
2050 1.0–1.8 0.8–2.0 0.4–2.5 2.8 1.0–1.6 0.8–1.9 0.5–2.3 2.6 0.9–1.6 0.7–1.9 0.3–2.4 2.7
2100 2.4–4.5 1.7–5.3 0.8–7.2 10.3 2.0–3.6 1.4–4.3 0.7–6.3 8.7 1.7–3.1 1.2–3.8 0.5–6.0 8.3
2150 4.2–6.9 3.4–8.4 2.5–14.1 20.6 2.8–5.6 1.9–7.2 0.7–12.5 17.8 2.4–4.5 1.9–6.1 1.3–11.7 17.5
2200 5.5–10.0 4.4–13.0 3.0–23.4 34.4 3.3–7.9 2.1–10.6 0.4–20.5 30.4 2.7–6.4 2.0–9.4 1.2–19.8 30

PHILADELPHIA, PA
2030 0.4–0.9 0.3–1.1 0.1–1.3 1.4 0.5–0.8 0.4–0.9 0.2–1.1 1.2 0.4–0.9 0.3–1.0 0.1–1.3 1.4
2050 0.9–1.6 0.6–1.9 0.3–2.3 2.6 0.8–1.5 0.6–1.7 0.3–2.1 2.4 0.8–1.5 0.5–1.7 0.2–2.2 2.5
2100 2.1–4.1 1.4–5.0 0.5–6.8 9.8 1.7–3.3 1.1–4.0 0.4–5.9 8.3 1.3–2.8 0.9–3.5 0.2–5.6 7.9
2150 3.7–6.3 2.9–7.9 2.0–13.5 19.9 2.3–5.1 1.4–6.6 0.3–11.7 17 1.9–4.0 1.4–5.5 0.8–11.1 16.8
2200 4.9–9.3 3.8–12.2 2.4–22.5 33.4 2.7–7.1 1.5–9.8 0.0–19.5 29.3 2.0–5.7 1.3–8.7 0.6–18.9 29

LEWES, DE
2030 0.5–0.9 0.4–1.1 0.2–1.3 1.4 0.5–0.8 0.4–1.0 0.3–1.1 1.2 0.5–0.9 0.4–1.0 0.2–1.2 1.3
2050 1.0–1.7 0.7–1.9 0.4–2.4 2.7 0.9–1.5 0.7–1.7 0.5–2.2 2.5 0.9–1.5 0.7–1.7 0.4–2.1 2.6
2100 2.3–4.2 1.7–5.0 0.8–7.0 9.9 1.9–3.4 1.4–4.1 0.7–6.0 8.4 1.5–2.9 1.1–3.6 0.5–5.8 8.1
2150 3.9–6.7 3.2–8.2 2.2–13.8 20.4 2.6–5.3 1.8–6.7 0.8–12.1 17.5 2.1–4.3 1.7–5.8 1.1–11.4 17.2
2200 5.2–9.8 4.2–12.7 2.8–23.0 34.1 3.1–7.4 1.9–10.1 0.5–20.0 30 2.4–6.1 1.7–9.1 0.9–19.4 29.6

BALTIMORE, MD
2030 0.5–0.9 0.3–1.0 0.1–1.2 1.3 0.5–0.8 0.4–0.9 0.2–1.1 1.2 0.5–0.8 0.3–1.0 0.1–1.2 1.3
2050 0.9–1.6 0.7–1.8 0.4–2.3 2.6 0.9–1.5 0.7–1.7 0.4–2.1 2.5 0.8–1.4 0.6–1.7 0.3–2.1 2.5
2100 2.2–4.1 1.6–4.9 0.7–6.8 9.7 1.7–3.2 1.3–3.9 0.6–5.9 8.2 1.4–2.8 1.0–3.5 0.4–5.6 7.9
2150 3.7–6.4 3.0–7.9 2.1–13.4 19.9 2.4–5.0 1.6–6.5 0.6–11.8 17.1 2.0–4.1 1.5–5.6 1.0–11.1 16.8
2200 5.0–9.4 3.9–12.3 2.6–22.5 33.4 2.9–7.1 1.7–9.8 0.3–19.5 29.3 2.2–5.8 1.5–8.8 0.7–19.0 29

WASHINGTON, DC
2030 0.5–0.9 0.4–1.0 0.2–1.2 1.3 0.5–0.8 0.4–0.9 0.2–1.1 1.2 0.5–0.8 0.3–1.0 0.2–1.2 1.3
2050 0.9–1.5 0.7–1.8 0.4–2.2 2.6 0.9–1.4 0.7–1.6 0.4–2.0 2.4 0.8–1.4 0.6–1.6 0.3–2.0 2.5
2100 2.2–4.0 1.6–4.8 0.7–6.7 9.6 1.7–3.2 1.2–3.9 0.6–5.8 8.1 1.4–2.8 1.0–3.4 0.4–5.6 7.9
2150 3.7–6.3 3.0–7.9 2.1–13.4 19.8 2.4–5.0 1.6–6.5 0.6–11.7 17 2.0–4.0 1.5–5.6 1.0–11.1 16.8
2200 5.0–9.4 3.9–12.2 2.6–22.4 33.3 2.8–7.1 1.7–9.7 0.3–19.4 29.3 2.1–5.8 1.4–8.7 0.7–18.9 28.9
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Table A15: Sea-level rise projections (con’t)
Feet above 2000 RCP 8.5 RCP 4.5 RCP 2.6

Likely 90% range 99% range 1-in-1000 Likely 90% range 99% range 1-in-1000 Likely 90% range 99% range 1-in-1000
SAN DIEGO, CA

2030 0.4–0.6 0.3–0.6 0.2–0.7 0.8 0.3–0.6 0.3–0.6 0.1–0.8 0.8 0.4–0.6 0.3–0.6 0.2–0.8 0.8
2050 0.7–1.2 0.6–1.3 0.4–1.7 2.3 0.7–1.1 0.5–1.2 0.3–1.6 2.1 0.6–1.0 0.5–1.2 0.3–1.6 2.1
2100 1.9–3.4 1.5–4.1 1.0–6.3 9.1 1.4–2.7 1.0–3.3 0.5–5.5 8 1.2–2.3 0.9–3.0 0.5–5.3 7.8
2150 3.1–5.9 2.4–7.7 1.7–13.0 19.6 2.0–4.5 1.4–6.1 0.5–11.2 17.6 1.6–3.8 1.1–5.3 0.6–11.0 17.1
2200 4.2–9.2 3.0–12.6 1.7–22.5 34 2.4–6.8 1.3–9.6 0.0–19.2 30.4 1.7–5.6 0.9–8.6 0.2–19.0 30

SAN FRANCISCO, CA
2030 0.3–0.5 0.3–0.6 0.2–0.7 0.8 0.3–0.5 0.2–0.6 0.1–0.8 0.8 0.3–0.5 0.3–0.6 0.2–0.7 0.8
2050 0.7–1.1 0.5–1.3 0.3–1.6 2.3 0.6–1.0 0.5–1.2 0.3–1.5 2.1 0.6–1.0 0.4–1.1 0.2–1.5 2.1
2100 1.8–3.2 1.4–4.0 0.8–6.2 9 1.3–2.6 1.0–3.2 0.5–5.4 7.9 1.1–2.3 0.8–2.9 0.4–5.2 7.7
2150 2.9–5.7 2.3–7.5 1.5–12.9 19.4 1.9–4.4 1.2–5.9 0.4–11.1 17.4 1.4–3.6 1.0–5.2 0.5–10.9 17
2200 3.9–9.0 2.8–12.3 1.5–22.2 33.8 2.2–6.6 1.1–9.3 -0.1–19.1 30.3 1.5–5.4 0.7–8.4 0.0–18.9 29.9

ASTORIA, OR
2030 0.1–0.3 0.0–0.3 -0.1–0.4 0.5 0.1–0.3 0.0–0.3 -0.1–0.5 0.5 0.1–0.3 0.0–0.3 -0.1–0.4 0.5
2050 0.2–0.6 0.1–0.8 -0.1–1.2 1.8 0.2–0.6 0.1–0.7 -0.1–1.1 1.6 0.2–0.6 0.0–0.7 -0.1–1.1 1.6
2100 1.0–2.3 0.6–3.0 0.1–5.3 7.9 0.5–1.7 0.2–2.3 -0.2–4.5 6.9 0.3–1.5 0.0–2.1 -0.4–4.4 6.8
2150 1.6–4.2 0.9–5.9 0.2–11.1 17.8 0.7–3.1 0.0–4.6 -0.7–9.7 15.8 0.3–2.4 -0.2–4.0 -0.6–9.6 15.5
2200 2.1–7.0 1.0–10.1 -0.3–19.8 31.5 0.6–4.8 -0.4–7.5 -1.6–17.2 28.2 -0.1–3.8 -0.8–6.7 -1.5–17.1 27.7

SEATTLE, WA
2030 0.3–0.5 0.2–0.5 0.2–0.6 0.7 0.3–0.5 0.2–0.5 0.1–0.7 0.7 0.3–0.5 0.2–0.5 0.1–0.6 0.7
2050 0.6–1.0 0.5–1.1 0.3–1.5 2.1 0.6–0.9 0.4–1.1 0.2–1.4 1.9 0.5–0.9 0.4–1.1 0.2–1.4 1.9
2100 1.6–3.0 1.3–3.7 0.8–5.9 8.5 1.3–2.4 0.9–3.0 0.5–5.2 7.5 1.1–2.2 0.7–2.8 0.3–5.1 7.4
2150 2.6–5.2 2.0–6.9 1.3–12.0 18.6 1.8–4.1 1.1–5.6 0.3–10.7 16.6 1.3–3.4 0.9–5.0 0.5–10.6 16.3
2200 3.5–8.3 2.4–11.3 1.2–21.0 32.4 2.1–6.2 1.0–8.9 -0.2–18.4 29.1 1.4–5.2 0.7–8.1 0.0–18.3 28.6

JUNEAU, AK
2030 -1.2– -1.1 -1.3– -1.0 -1.4– -0.9 -0.8 -1.2– -1.1 -1.3– -1.0 -1.4– -0.9 -0.8 -1.2– -1.1 -1.3– -1.0 -1.4– -0.9 -0.8
2050 -1.9– -1.6 -2.1– -1.5 -2.2– -1.1 -0.5 -2.0– -1.7 -2.1– -1.5 -2.2– -1.2 -0.7 -2.0– -1.7 -2.2– -1.5 -2.3– -1.2 -0.7
2100 -3.5– -2.4 -3.9– -1.7 -4.3–0.6 3.2 -3.9– -2.8 -4.2– -2.2 -4.6– -0.1 2.2 -4.1– -3.0 -4.4– -2.4 -4.7– -0.2 2.2
2150 -5.2– -2.6 -5.9– -1.0 -6.8–4.2 10.8 -6.0– -3.8 -6.6– -2.3 -7.3–2.9 8.6 -6.4– -4.3 -6.8– -2.7 -7.2–2.9 8.6
2200 -7.0– -2.3 -8.2–0.7 -9.5–10.3 22.1 -8.3– -4.4 -9.3– -1.6 -10.4–8.1 18.4 -8.8– -5.1 -9.6– -2.2 -10.3–8.2 18.3

ANCHORAGE, AK
2030 -0.1–0.3 -0.2–0.4 -0.4–0.6 0.8 -0.1–0.4 -0.3–0.5 -0.5–0.8 0.9 -0.1–0.2 -0.2–0.4 -0.4–0.6 0.7
2050 -0.2–0.5 -0.4–0.8 -0.7–1.2 1.7 -0.2–0.6 -0.4–0.8 -0.8–1.3 1.6 -0.2–0.4 -0.4–0.7 -0.7–1.0 1.5
2100 -0.6–1.2 -1.2–2.0 -2.0–4.0 6.8 -0.3–1.3 -0.8–2.0 -1.5–3.9 6.5 -0.2–1.2 -0.6–1.8 -1.2–3.9 6.5
2150 -1.5–2.3 -2.7–4.2 -4.5–9.2 16 -0.5–2.4 -1.4–4.0 -2.7–8.9 15.1 -0.4–2.2 -1.2–3.8 -2.5–9.3 15.2
2200 -1.3–4.5 -3.0–7.5 -5.3–17.0 29.2 -0.5–4.2 -1.8–6.9 -3.5–16.4 27.4 -0.4–4.1 -1.6–7.1 -3.6–17.1 28

HONOLULU, HI
2030 0.4–0.6 0.3–0.7 0.2–0.8 0.9 0.4–0.6 0.3–0.7 0.2–0.8 0.9 0.4–0.6 0.3–0.7 0.2–0.8 0.9
2050 0.8–1.2 0.6–1.4 0.4–1.9 2.5 0.7–1.1 0.6–1.3 0.4–1.7 2.2 0.6–1.1 0.5–1.3 0.3–1.7 2.2
2100 2.1–3.8 1.6–4.6 0.9–6.9 10 1.5–2.8 1.1–3.5 0.6–5.8 8.7 1.2–2.5 0.9–3.2 0.4–5.6 8.5
2150 3.3–6.6 2.4–8.7 1.4–14.3 21.5 2.1–4.9 1.3–6.5 0.4–12.0 19 1.5–4.0 1.0–5.7 0.5–11.7 18.6
2200 4.4–10.4 2.9–14.2 1.3–24.8 37.7 2.4–7.3 1.2–10.4 -0.3–20.5 33.2 1.6–6.1 0.7–9.3 -0.1–20.0 32.8
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