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ABSTRACT

Quantitative assessment of climate change risk requires a method for constructing probabilistic time

series of changes in physical climate parameters. Here, two such methods, surrogate/model mixed en-

semble (SMME) and Monte Carlo pattern/residual (MCPR), are developed and then are applied to

construct joint probability density functions (PDFs) of temperature and precipitation change over the

twenty-first century for every county in the United States. Both methods produce likely (67% probability)

temperature and precipitation projections that are consistent with the Intergovernmental Panel on Cli-

mate Change’s interpretation of an equal-weighted Coupled Model Intercomparison Project phase 5

(CMIP5) ensemble but also provide full PDFs that include tail estimates. For example, both methods

indicate that, under ‘‘Representative Concentration Pathway’’ 8.5, there is a 5% chance that the contiguous

United States could warm by at least 88Cbetween 1981–2010 and 2080–99. Variance decomposition of SMME

and MCPR projections indicates that background variability dominates uncertainty in the early twenty-first

century whereas forcing-driven changes emerge in the second half of the twenty-first century. By separating

CMIP5 projections into unforced and forced components using linear regression, these methods generate

estimates of unforced variability from existing CMIP5 projections without requiring the computationally

expensive use of multiple realizations of a single GCM.

1. Introduction

The risk of an adverse event is characterized by its

probability and its consequences (Kaplan and Garrick

1981). Risk analysis thus requires consideration of the

probabilities and consequences of as full a range of possible

outcomes as possible, including ‘‘tail risks’’ that have low

probability but high consequence. For assessments of the

local and regional risks of climate change, this requirement

poses two major challenges. First, ensembles of coupled

atmosphere–ocean general circulationmodels (GCMs) and

Earth system models (ESMs), such as those in the archive

for phase 5 of the Coupled Model Intercomparison Project

(CMIP5; Taylor et al. 2012), are not probability distributions
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and were not designed to consider all sources of projection

uncertainty. CMIP5 model ensembles are ‘‘ensembles of

opportunity,’’ arbitrarily compiled on the basis ofmodeling-

center participation. Sampling from such a distribution by

assigning equal probability to all models may therefore

yield a biased outcome (Tebaldi and Knutti 2007). Second,

GCMs and ESMs may underestimate the probability of

extreme climate outcomes. For example, the range of

equilibrium climate sensitivity (ECS) in CMIP5 is 2.18–
4.78C per doubling of carbon dioxide (CO2) concentrations

(Flato et al. 2013, their Table 9.5), whereas observational

and other non-GCM constraints allow ;17% probability

of values exceeding 4.58C (Collins et al. 2013). Simply

weighting individual GCMs in a multimodel ensemble will

not produce such extreme behavior if it is not simulated.

Quantitative risk analysis that leverages the detailed

physical projections that are produced by GCMs therefore

requires methods that 1) assign probability weights to

projected changes and 2) account for tail risks that are not

captured by the physical models.

In this study, we develop two such methods and dem-

onstrate them by producing county-level projections of

twenty-first-century changes in temperature and precip-

itation in the United States. The first method, surrogate/

model mixed ensemble (SMME), uses probabilistic sim-

ple climate model (SCM) projections of global mean

temperature change toweightGCMoutput and to inform

the construction of model surrogates to cover the tails

of the SCM probability distribution that are missing from

the GCM ensemble. The second method, Monte Carlo

pattern/residual (MCPR), decomposes GCM output into

forced climate change and unforced climate variability,

uses SCM temperature projections to scale patterns of

forced change, and then adds unforced variability. The

SMME projections presented here were recently applied

in a quantitative analysis of some of the economic risks

that climate change poses to the United States (Houser

et al. 2015; Rasmussen and Kopp 2015).

Perturbed-physics ensembles (e.g., Stainforth et al. 2005)

can produce PDFs of future climate through sampling

projection uncertainty originating from model parameters,

but this approach requires enormous computing resources.

However, SCMs [e.g., the Model for the Assessment of

Greenhouse Gas-Induced Climate Change (MAGICC;

Meinshausen et al. (2011a)] can be run in a probabilistic

fashion on a desktop computer, sampling the range of

parametric uncertainty consistent with both historical ob-

servations and expert judgment of parameters such as

climate sensitivity. In addition, MAGICC has shown

to emulate well the global mean temperature from

GCMs over multiple emissions scenarios (e.g., Rogelj

et al. 2012), ensuring that SCM-generated PDFs en-

compass both the spread of results from key variables

in the CMIP5 archive and global mean temperature

pathways not simulated in complex models.

Model surrogates used to cover the tails of the PDFmust

spatially resolve local projections of climate change under

global temperature pathways that are not present in

GCMs. Pattern scaling applies a linear relationship be-

tween changes in local climate variables and coincident

changes in global temperature (i.e., patterns) produced by

GCMs with a scalar (time-evolving global mean temper-

ature) to generate projections under alternative global

temperature pathways that would otherwise require a

GCM to simulate them (Santer et al. 1990; Mitchell 2003;

Moss et al. 2010). Moreover, the same linear regression

used for pattern scaling can facilitate uncertainty quanti-

fication. If projections from a GCM are considered as the

sum of forced and unforced climate variability, linear re-

gression can disentangle these components (e.g., Sutton

et al. 2015), with the forced signal estimated as the linear

trend and the residuals representing a first-order approxi-

mation of unforced variability. Whereas conventional

pattern-scaling approaches discard the latter, because

they are assumed to be uncorrelated with global mean

temperature, we retain these to assess the projection

uncertainty associated with unforced variability and

to compare with estimates from computationally expen-

sive multimember initial-condition ensembles (e.g., Kay

et al. 2015; Deser et al. 2014).

In section 2 of this paper, we first present an a priori

comparison of the approaches and then detail themethods.

In section 3, we identify sources of agreement and dis-

agreement for temperature and precipitation results from

an equal-weighted GCM ensemble, SMME projections,

andMCPR projections and examine their uncertainties. In

section 4, we consider the implications of these compari-

sons for the application of the twomethods.We summarize

the main findings and state conclusions in section 5. Ad-

ditional tables and figures and further details on methods

are available in the online supplement to this article. All

daily projections compiled in this analysis are freely avail-

able online (http://dx.doi.org/doi:10.7282/T3SF2Z93).

2. Methods

General overviews of both probabilistic methods are

shown in Fig. 1. In each case, we start with an estimated

probability distribution of globalmean temperatures over

time from an SCM. For the SMME method (Fig. 1a), we

use SCM projections of temperature change over the

twenty-first century to weight GCM projections of

monthly temperature and precipitation that have been

bias corrected and downscaled using the bias-corrected

spatial disaggregation (BCSD; see Appendix A that is

available in the online supplemental material) method
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(Brekke et al. 2014) and ‘‘surrogate’’ models that are em-

ployed to ensure that the tails of the probability distribu-

tion are represented. For theMCPRmethod (Fig. 1b), the

pathways of temperature change projected by the SCMare

combined with randomly selected patterns of forced

change and residuals of unforced variability from the

downscaled CMIP5 models.

In an a priori comparison of the two approaches, we

note three potentially important differences between

SMME and MCPR. First, within the range of global

temperatures for which CMIP5 output is available, the

SMME approach allows for more-complex, nonlinear re-

lationships between global temperature and regional

forced change than does the MCPR method, which

assumes a constant relationship reflected by the patterns.

Second, the patterns and residuals employed in the two

approaches are selected differently. The SMME method

requires ad hoc selection of the patterns used to create

surrogate models, whereas MCPR applies a consistent

algorithmic method to generate all output. Furthermore,

the SMMEmethod retains a pairing between patterns and

the residual, but the MCPR approach assumes that pat-

terns and residuals are statistically independent of one

another, which is unlikely to be strictly true. The MCPR

method assumes that all patterns and residuals are equally

likely. In the SMME technique, the patterns and residuals

of models associated with higher-probability global tem-

perature projections have greater weight. Third, the

SMME method uses the SCM global mean temperature

change for 2080–99 as the target for the probability

distribution but may deviate from the SCM distribution at

other time points. For the long-term change in globalmean

temperature, the MCPR approach will always match the

SCM distribution because all patterns perfectly track a

specific quantile of the SCM global mean temperature.

a. Concentration pathways

We incorporate radiative forcing projections from

all four ‘‘Representative Concentration Pathways’’

(RCPs): RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 (van

Vuuren et al. 2011). Each RCP represents a greenhouse

gas concentration pathway and does not necessarily re-

flect socioeconomic and/or policy scenarios. A set of

socioeconomic projections, unaccompanied by climate

policy [the ‘‘Shared Socioeconomic Pathways’’ (SSPs)],

has recently been constructed, however, and the radia-

tive forcings of these no-policy projections can be compared

with those in the RCPs (O’Neill et al. 2014, 2016; Riahi

2013). The lowest-emissions, ‘‘sustainable growth’’ SSP

(SSP 1) has radiative forcing that is comparable to RCP 6.0,

and the highest SSP is comparable to or slightly higher than

RCP 8.5, which can be interpreted as a high-emissions,

business-as-usual scenario. RCP 4.5 is consistent with

moderate greenhouse gas emission reductions, and RCP

2.6 is a strong mitigation scenario. Notably, RCP 6.0 has

the second lowest CO2-equivalent emissions total prior

to 2050 (Meinshausen et al. 2011b, their Fig. 3g). As a

consequence, mean global temperature projections from

RCP 6.0 do not exceed those of RCP 4.5 until the third

quarter of the twenty-first century.

FIG. 1. Flow of projection construction for (a) SMME and (b) MCPR.
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b. Global mean temperature

Global mean temperature projections were produced

as described in Rasmussen and Kopp (2015), and the

description herein is modified from that work. Pro-

jections of global mean temperature for the four RCPs

are calculated using MAGICC6 (Meinshausen et al.

2011a) in probabilistic mode. MAGICC6 is an SCM that

represents hemispherically averaged atmosphere and

ocean temperature and the globally averaged carbon

cycle. MAGICC6 does not simulate internal climate

variability or precipitation, both of which require more

complex models. The distribution of input parameters

for MAGICC6 that we employ has been constructed

from a Bayesian analysis that is based upon historical

observations of hemispheric land and ocean surface air

temperature, ocean heat content, estimates of radiative

forcing (Meinshausen et al. 2009), and the ECS proba-

bility distribution from the Intergovernmental Panel on

Climate Change (IPCC) Fifth Assessment Report

(AR5) (Collins et al. 2013) (see Fig. A1 in the online

supplemental material). The probability distribution of

climate sensitivity from AR5 is based on several lines of

information. Evidence from observational, paleo-

climatic, and feedback analyses indicates 5th, 17th, and

83rd percentiles of 1.08, 1.58, and 4.58C, respectively. In
addition, evidence from climate models suggests a 90th

percentile of 6.08C (Collins et al. 2013). The differences

in climate sensitivity between MAGICC6 and AR5 in

part reflect sampling and the constraints needed to fit

historical observations within the MAGICC6 model

structure. The tails of the global mean temperature dis-

tribution are vulnerable to extreme scenarios produced

by MAGICC6 and are not robust. Extreme outcomes,

such as the 99th percentile, exceed the capabilities of the

simple model and are not presented.

For each RCP, we used 600 model runs ofMAGICC6.

The 5th, 7th, 83rd, and 90th percentiles of ECS for these

600 runs are 1.58, 1.68, 4.98, and 5.98C per CO2 doubling,

respectively. From theMAGICC6 projections, RCP 2.6,

RCP4.5, RCP 6.0, and RCP 8.5 yield likely (67% prob-

ability) global mean temperature increases in 2080–99

above 1981–2010 levels of 0.58–1.48, 1.18–2.58, 1.58–3.08,
and 2.68–4.98C, respectively (see Table A1 in the online

supplemental material). Because of underlying struc-

tural uncertainties in the simple climate model, a sample

size beyond the 600 runs does not yield much additional

precision (Fig. A2 in the online supplemental material).

c. Pattern fitting

The pattern-fitting method is described in Rasmussen

and Kopp (2015), and the description in this paragraph

parallels that therein. Assuming that forced climate

change can be approximated as linear in the long-term

(30 yr) running average of global mean temperature, for

each CMIP5 model and scenario i and each at station j,

we fit the deviation from the 1981–2010 reference levels

for seasonal temperature and precipitation to the linear

model

y
i, j
(DT , t)5 k̂

i, j
DT1 b

i, j
1 «

i, j
(t) , (1)

following Rasmussen and Kopp (2015) and Mitchell

(2003). Here,DT is the running-average change in global

mean temperature relative to the reference period

(1981–2010), k̂ is the estimated seasonal pattern, k̂DT is

the estimated forced climate change, bi,j is the observed

historical mean, and «(t) is an estimated temporal pat-

tern of unforced variability. As an example, Fig. 2

shows a regression for the GFDL CM3 (Griffies et al.

2011; model acronym definitions are available at http://

www.ametsoc.org/PubsAcronymList) for the grid cell

containing New York, New York, for both summertime

monthly mean temperature and precipitation rate (RCP

8.5). For local precipitation patterns, unforced vari-

ability is greater, and there is a weaker correlation with

global mean temperature.

We use a single realization from each CMIP5 model;

note that, for models for which multiple realizations are

available, fitting the output from additional model re-

alizations could more tightly constrain the separation

into both forced changes and unforced variability and

could allow for alternative approaches in which k̂ is not

constant with temperature. Other approachesmight also

include additional covariates, such as aerosol emissions

that can modify the patterns (e.g., Frieler et al. 2012).

Maps of eachmodel’s annually derived temperature and

precipitation patterns for the contiguous United States

(CONUS) are shown in the online supplemental mate-

rial (Figs. A3 and A4). For temperature, most models

have similar patterns. Larger intermodel differences for

precipitation have been suggested to originate from

large background variations in precipitation that mask

the forced signal (Tebaldi et al. 2011; Hawkins and

Sutton 2011).

d. Probability weighting

1) EQUAL-WEIGHTED CMIP5 ENSEMBLE

As a baseline for comparing the SMME and MCPR

projections, we employ an equal-weighted CMIP5 en-

semble. In interpreting this ensemble, we follow the

approach of the IPCC. In particular, we note that, while

in IPCC terminology the phrases very likely and likely

bracket the 5th–95th percentiles and the 17th–83rd

percentiles outcomes, respectively, the IPCC AR5 uses
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the 5th–95th-percentile range of long-term temperature

change as projected by CMIP5 to bound the likely out-

comes (see Collins et al. 2013, section 12.4.1.1). The

underlying judgment that the CMIP5 archive does not

adequately represent the tails of projected future tem-

perature change is based upon the observation that the

likely (17th–83rd) range of the transient climate re-

sponse (TCR; Cubasch et al. 2001), inferred from

multiple lines of evidence, corresponds to the 5th–

95th-percentile range of the TCR from the CMIP5

models (Collins et al. 2013), as well as more general

informal expert assessment of confidence in GCM

projections. We consequently compare the 5th–95th

percentile of temperature projections from the equal-

weighted CMIP5 ensemble with the 17th–83rd percentile

of the probability distributions from the SMME and

MCPRmethods. For precipitation projections, we do not

make such an adjustment.

2) SURROGATE/MODEL MIXED ENSEMBLE

METHOD

The SMME method was used in Houser et al. (2015)

and originally described in Rasmussen andKopp (2015);

the description here parallels that therein. First, the unit

interval [0, 1] is divided into 10 bins, but not of equal

width; the tails of the intervals are allocatedmore bins to

ensure sampling that was not captured by the CMIP5

models. The bins are centered at the 4th, 10th, 16th,

30th, 50th, 70th, 84th, 90th, 94th, and 99th percentiles.

The bounds and center of each bin are assigned corre-

sponding quantiles of global mean temperature from the

MAGICC6 output; likewise, the CMIP5 global mean

temperature is placed into bins on the basis of the pro-

jected change in global mean temperature from 1981–

2010 to 2080–99.

If there are fewer than two CMIP5 models in a bin,

model surrogates are produced to raise the total number

of models and surrogates to two. Model surrogates are

generated by taking the MAGICC6 projected annual

global mean temperature time series that corresponds to

the bin’s middle quantile. In the case in which there is no

CMIP5 output available in the bin, two models are se-

lected that have global mean temperature projections

that are close to the bin and, where possible, one model

pattern has a net increase in CONUS precipitation and

one has a net decrease (or lesser increase) in CONUS

precipitation. For bins with a single CMIP5 model, a

model is selected with a precipitation pattern that is ei-

ther identical or complementary to the one in the bin.

Last, the patterns from the selectedmodels are scaled by

the global mean temperature projection and the same

model’s residuals are added, creating a surrogate model

that includes both forced change and unforced vari-

ability. Tables 1–4 list the models used to generate each

pattern as well as their respective global mean temper-

ature bin assignments.

The models and surrogates in the final probability

distribution are weighted equally in each bin such that

the total weight of the bin corresponds to the target

distribution for 2080–99 temperature. For instance, if

four models are in the bin centered at the 30th percen-

tile, bounded by the 20th–40th percentiles, each will be

FIG. 2. Local JJA (left) temperature anomaly and (right) daily precipitation-rate anomaly (mmday21) from the

GFDLCM3 grid cell containingNewYorkCity vs globalmean temperature anomaly (RCP 8.5). Best-fit regression

lines are shown in red. (Reproduced with permission from Columbia University Press.)
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assigned a probability of 20%/4 5 5%. Thus, the pro-

jected distribution for global mean temperature ap-

proximates the target (see Fig. 3 and also Fig. A6 in the

online supplemental material).

3) MONTE CARLO PATTERN/RESIDUAL METHOD

In theMonte Carlo pattern/residual (MCPR)method,

we use the CMIP5 output as a source of patterns and

residuals but do not directly retain any model output.

Instead, we divide the unit interval [0, 1] into 100 equal

bins and take the quantile of MAGICC6 global mean

temperature projections corresponding to the center of

each bin (i.e., the 0.5th, 1.5th, 2.5th, etc., percentiles).

We generate a pool of candidate patterns by replicating

the list of patterns a sufficient number of times to meet

or exceed the number needed and then sample without

replacement from the pool to assign a pattern to each

bin. We sample without replacement from an identical

pool to assign a residual time series to each bin. We then

use the globalmean temperature projection, the pattern,

and the residual time series to generate a projection for

each bin. Each projection is of equal probability, but

patterns and/or residuals could be alternatively weighted

(historical performance, pattern accuracy in reproduc-

ing GCM results, etc.). The identical pairs of CMIP5

patterns and residuals are assigned to each bin to project

both temperature and precipitation.

e. Daily climate projections

1) GLOBAL CLIMATE MODEL OUTPUT

Although state-of-the-art GCMs can achieve resolu-

tions of ;50km 3 50km (e.g., Delworth et al. 2012),

GCM results fromCMIP5 are calculated with horizontal

resolutions that are too coarse [i.e., ;18–28; see Flato

et al. (2013, their Table 9.1)] to attempt to characterize

vulnerabilities and impacts at the county level. In addi-

tion, GCM projections directly from the CMIP5 re-

pository contain systematic model biases that must be

corrected before being employed to address climate

impacts (Ho et al. 2012). Projections of average tem-

perature, minimum daily temperature, maximum daily

temperature, and precipitation (all monthly averaged)

were obtained from a BCSD archive derived from

TABLE 1. Selected patterns and SMME probability weights used for RCP 2.6. ‘‘Scaled’’ models are surrogates used to populate the

respective quantile of the temperature distribution. FIO-ESM is not used because its global mean temperature is outside the range of the

MAGICC PDF.

Quantile SMME bin Model SMME weight 2080–99 global DT (8C) 2080–99 CONUS DP (%)

0.00 1 GFDL-ESM2G 0.0400 0.25 21.41

0.04 1 Scaled FIO-ESM 0.0400 0.39 20.70

0.10 2 GISS-E2-R 0.0200 0.46 2.42

0.10 2 Scaled GISS-E2-R 0.0200 0.46 2.39

0.16 3 Scaled FGOALS-g2 0.0400 0.52 2.99

0.20 3 FGOALS-g2 0.0400 0.58 3.34

0.30 4 Scaled MPI-ESM-LR 0.1000 0.64 3.38

0.40 4 MPI-ESM-LR 0.1000 0.78 4.13

0.40 5 MPI-ESM-MR 0.0333 0.78 2.57

0.43 5 BCC CSM1.1 0.0333 0.82 0.33

0.46 5 NorESM1-M 0.0333 0.84 0.59

0.47 5 CCSM4 0.0333 0.86 5.01

0.55 5 NorESM1-ME 0.0333 0.94 6.42

0.55 5 MRI-CGCM3 0.0333 0.92 3.78

0.63 6 MIROC5 0.0400 1.03 4.11

0.65 6 IPSL-CM5A-MR 0.0400 1.07 21.39

0.66 6 HADGEM2-AO 0.0400 1.08 20.23

0.68 6 BNU-ESM 0.0400 1.13 1.02

0.76 6 IPSL-CM5A-LR 0.0400 1.25 6.10

0.82 7 HADGEM2-ES 0.0200 1.40 9.26

0.84 7 CESM1(CAM5) 0.0200 1.46 13.56

0.85 7 CSIRO-Mk3.6.0 0.0200 1.45 10.41

0.85 7 CanESM2 0.0200 1.47 7.79

0.90 8 Scaled MIROC-ESM-CHEM 0.0200 1.62 7.43

0.91 8 MIROC-ESM 0.0200 1.65 7.25

0.93 9 MIROC-ESM-CHEM 0.0300 1.69 7.78

0.97 9 GFDL CM3 0.0300 1.92 6.14

0.99 10 Scaled HadGEM2-ES 0.0100 2.18 14.41

0.99 10 Scaled MIROC-ESM-CHEM 0.0100 2.18 10.05

2306 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 55

D
ow

nloaded from
 http://journals.am

etsoc.org/jam
c/article-pdf/55/10/2301/3585125/jam

c-d-15-0302_1.pdf by guest on 14 O
ctober 2020



selected CMIP5 models (Brekke et al. 2014). An in-

ventory of the models used in this study with each RCP

is shown in the online supplemental material (Table

A2). For the CONUS, projections are disaggregated to
1/88 3 1/88 (;14 km) horizontal resolution, whereas
1/28 3 1/28 (;56km) model output with global coverage

over land only is used to provide projections for Alaska

and Hawaii.

As with all climate downscaling techniques, providing

climate variables at higher spatial and temporal resolu-

tions does not necessarily make projections any more

reliable than raw results from the underlying GCM.

More detail is not always indicative of superior in-

formation. Statistical downscaling techniques assume that

current relationships between local and large-scale cli-

mate variables will remain the same in future climates,

whichmay ormay not be strictly true. Investigators should

ideally employ multiple statistical downscaling methods

to gauge the uncertainties associated with their method.

Various approaches are given in the literature (e.g.,

Stoner et al. 2013; Mahmood and Babel 2013; Pierce et al.

2014; McGinnis et al. 2015).

Starting with the BCSD model projections, we apply

the delta method (Ramirez-Villegas and Jarvis 2010)

TABLE 2. As in Table 1, but for RCP 4.5.

Quantile SMME bin Model SMME weight 2080–99 global DT (8C) 2080–99 CONUS DP (%)

0.04 1 Scaled GFDL-ESM2G 0.0400 0.93 4.63

0.07 1 GFDL-ESM2G 0.0400 0.99 4.93

0.09 2 FIO-ESM 0.0200 1.03 1.64

0.10 2 Scaled GFDL-ESM2M 0.0200 1.03 2.37

0.17 3 GFDL-ESM2M 0.0267 1.17 2.70

0.18 3 GISS-E2-R-CC 0.0267 1.17 1.98

0.20 3 GISS-E2-R 0.0267 1.19 2.02

0.21 4 INM-CM4 0.0500 1.21 7.65

0.25 4 FGOALS-g2 0.0500 1.31 2.89

0.29 4 GISS-E2-H-CC 0.0500 1.36 6.51

0.37 4 BCC_CSM1.1(m) 0.0500 1.49 24.01

0.41 5 CESM1-Biogeochemistry (CESM1-BGC) 0.0182 1.56 4.52

0.42 5 BCC_CSM1.1 0.0182 1.57 4.23

0.44 5 MPI-ESM-LR 0.0182 1.62 5.52

0.45 5 NorESM1-M 0.0182 1.60 5.92

0.45 5 IPSL-CM5B-LR 0.0182 1.62 9.24

0.45 5 CCSM4 0.0182 1.62 6.16

0.45 5 MRI-CGCM3 0.0182 1.63 10.28

0.46 5 NorESM1-ME 0.0182 1.67 1.67

0.48 5 MPI-ESM-MR 0.0182 1.68 4.53

0.48 5 MIROC5 0.0182 1.71 0.34

0.58 5 CNRM-CM5 0.0182 1.88 6.97

0.70 6 ACCESS1.3 0.0182 2.10 9.22

0.71 6 CMCC-CM 0.0182 2.14 0.21

0.71 6 BNU-ESM 0.0182 2.13 1.06

0.72 6 IPSL-CM5A-LR 0.0182 2.17 22.60

0.74 6 ACCESS1.0 0.0182 2.21 3.10

0.74 6 IPSL-CM5A-MR 0.0182 2.23 24.01

0.74 6 CSIRO-Mk3.6.0 0.0182 2.24 13.46

0.77 6 CanESM2 0.0182 2.30 13.32

0.78 6 HadGEM2-CC 0.0182 2.31 2.77

0.78 6 CESM1(CAM5) 0.0182 2.30 6.44

0.79 6 HadGEM2-AO 0.0182 2.36 21.42

0.82 7 MIROC-ESM 0.0200 2.46 4.19

0.84 7 HadGEM2-ES 0.0200 2.55 8.15

0.85 7 MIROC-ESM-CHEM 0.0200 2.53 11.40

0.88 7 GFDL CM3 0.0200 2.70 10.00

0.90 8 Scaled MIROC-ESM-CHEM 0.0200 2.80 12.58

0.90 8 Scaled HadGEM2-AO 0.0200 2.80 21.68

0.95 9 Scaled MIROC-ESM-CHEM 0.0300 3.23 14.51

0.95 9 Scaled HadGEM2-AO 0.0300 3.23 21.94

0.99 10 Scaled MIROC-ESM-CHEM 0.0100 4.12 18.54

0.99 10 Scaled HadGEM2-AO 0.0100 4.12 22.47
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and then map and add the anomalies to observed tem-

perature and precipitation normals (1981–2010) at sta-

tions from the Global Historical Climatology Network

(GHCN; Arguez et al. 2012; http://go.usa.gov/KmqH).

Geographic county centroids are then mapped to the

nearest GHCN station [see section 2e(2)]. The GHCN

measures and records daily meteorological variables

worldwide and is the most comprehensive set of climate

data within the United States. Station-level data take

into account local meteorological phenomena, such as

the urban heat island and land–sea interaction, neither

of which is reproduced well by the gridded model out-

put. Only GHCN stations that met the two strictest

National Climatic Data Center data-completion re-

quirements for the definition of 30-yr monthly climate

normals were used. Those are stations with 1) complete

records and/or 2) nomore than five years missing and no

more than three consecutive years missing among suf-

ficiently complete years.

2) COUNTY–WEATHER STATION MAPPING

Since measured variables differ by station and because

record lengths and data completeness may also vary,

different GHCN station mappings exist for temperature

and precipitation. Each geographic county centroid is

mapped to the nearest GHCN station that meets either

data-completion requirement; no additional attention

was given to the geographic placement of each station.

Note that, for large counties or for counties with

complex terrain, baseline climate can spatially vary

dramatically and a single representative weather sta-

tion may not well characterize the average climate

of the county. In some cases, multiple counties are

mapped to the same weather station. Details regard-

ing the mapping of geographic county centroids to

GHCN weather stations are given in the online

supplemental files.

3) DAILY PROJECTIONS

Both GCMoutput and surrogate output are treated at

the monthly average level. As described in Rasmussen

and Kopp (2015) and as is standard with the BCSD

downscaling technique (Wood et al. 2004), to generate

daily temperature and precipitation, we assume that the

relationship between the monthly means and the daily

values comes from a stationary distribution (e.g., Wood

et al. 2002). We randomly assign each future year to a

historical year between 1981 and 2010. Monthly averages

are mapped to daily values from the GHCN stations using

the additive relationship for temperature [Eq. (2)] or the

TABLE 3. As in Table 1, but for RCP 6.0.

Quantile SMME bin Model SMME weight 2080–99 global DT (8C) 2080–99 CONUS DP (%)

0.04 1 Scaled GFDL-ESM2M 0.0400 1.31 2.22

0.04 1 Scaled FIO-ESM 0.0400 1.31 20.78

0.10 2 Scaled GFDL-ESM2M 0.0200 1.42 2.42

0.10 2 Scaled FIO-ESM 0.0200 1.42 20.85

0.15 3 GFDL-ESM2G 0.0400 1.50 2.40

0.18 3 FIO-ESM 0.0400 1.56 20.93

0.24 4 GISS-E2-R 0.0667 1.62 3.23

0.25 4 GFDL-ESM2M 0.0667 1.66 2.82

0.36 4 NorESM1-M 0.0667 1.85 7.76

0.41 5 NorESM1-ME 0.0500 1.94 4.27

0.43 5 BCC_CSM1.1 0.0500 1.96 5.09

0.44 5 MIROC5 0.0500 1.98 1.39

0.49 5 CCSM4 0.0500 2.11 8.42

0.65 6 CSIRO-Mk3.6.0 0.0400 2.41 1.45

0.67 6 HadGEM2-AO 0.0400 2.49 21.54

0.69 6 IPSL-CM5A-LR 0.0400 2.55 21.53

0.72 6 IPSL-CM5A-MR 0.0400 2.61 25.75

0.78 6 CESM1(CAM5) 0.0400 2.76 17.36

0.82 7 MIROC-ESM 0.0200 2.93 10.84

0.85 7 MIROC-ESM-CHEM 0.0200 3.03 9.40

0.86 7 HadGEM2-ES 0.0200 3.06 6.42

0.87 7 GFDL CM3 0.0200 3.10 11.80

0.90 8 Scaled MIROC-ESM-CHEM 0.0200 3.25 10.08

0.90 8 Scaled HadGEM2-ES 0.0200 3.25 6.83

0.95 9 Scaled MIROC-ESM-CHEM 0.0300 3.79 11.74

0.95 9 Scaled HadGEM2-ES 0.0300 3.79 7.95

0.99 10 Scaled MIROC-ESM-CHEM 0.0100 4.47 13.87

0.99 10 Scaled HadGEM2-ES 0.0100 4.47 9.40
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multiplicative relationship for precipitation [Eq. (3)] from

that historical year:

T
daily,model

5T
monthly,model

1 (T
daily,obs

2T
monthly,obs

)

or

(2)

P
daily,model

5
P
monthly,model

P
monthly,obs

P
daily,obs

. (3)

Where daily observations are missing from the 30-yr

historical record, we fill in the missing days and months

using relationships between daily and monthly values

from gridded datasets and between the climatological

30-yr normal value at the GHCN station (see section

‘‘a’’ of Appendix A in the online supplemental ma-

terial). Although a single downscaling method is em-

ployed in this study, a comparison between our

BCSD-derived daily projections and alternativemethods

that downscale to the daily level (e.g., localized con-

structed analogs or an asynchronous regional regression

model) could be of interest (Pierce et al. 2014; Stoner

et al. 2013).

TABLE 4. As in Table 1, but for RCP 8.5.

Quantile SMME bin Model SMME weight 2080–99 global DT (8C) 2080–99 CONUS DP (%)

0.04 1 Scaled GISS-E2-R 0.0400 2.26 8.37

0.04 1 Scaled INM-CM4 0.0400 2.26 1.58

0.10 2 Scaled GISS-E2-R 0.0200 2.43 9.00

0.10 2 Scaled INM-CM4 0.0200 2.43 1.70

0.12 3 GISS-E2-R 0.0267 2.50 9.26

0.14 3 INM-CM4 0.0267 2.58 1.81

0.18 3 GFDL-ESM2M 0.0267 2.64 5.29

0.22 4 GFDL-ESM2G 0.0500 2.77 7.20

0.33 4 FGOALS-g2 0.0500 3.03 1.52

0.39 4 NorESM1-M 0.0500 3.14 6.60

0.40 4 MRI-CGCM3 0.0500 3.19 13.38

0.43 5 BCC_CSM1.1(m) 0.0182 3.24 4.85

0.45 5 MIROC5 0.0182 3.31 20.33

0.46 5 IPSL-CM5B-LR 0.0182 3.33 9.32

0.46 5 NorESM1-ME 0.0182 3.32 2.98

0.47 5 BCC_CSM1.1 0.0182 3.34 2.00

0.50 5 FIO-ESM 0.0182 3.42 6.50

0.50 5 CNRM-CM5 0.0182 3.47 11.10

0.51 5 CESM1-BGC 0.0182 3.48 6.61

0.51 5 MPI-ESM-MR 0.0182 3.52 5.63

0.53 5 MPI-ESM-LR 0.0182 3.55 5.33

0.53 5 CCSM4 0.0182 3.59 5.39

0.64 6 ACCESS1.3 0.0143 3.96 15.44

0.65 6 CSIRO-Mk3.6.0 0.0143 3.97 11.92

0.66 6 HadGEM2-AO 0.0143 4.04 2.02

0.66 6 ACCESS1.0 0.0143 4.05 0.81

0.67 6 CESM1(CAM5) 0.0143 4.04 10.92

0.69 6 CMCC-CM 0.0143 4.14 5.39

0.71 6 BNU-ESM 0.0143 4.27 3.41

0.73 6 IPSL-CM5A-MR 0.0143 4.36 210.46

0.75 6 CanESM2 0.0143 4.41 22.06

0.75 6 IPSL-CM5A-LR 0.0143 4.43 25.31

0.78 6 HadGEM2-CC 0.0143 4.60 5.97

0.78 6 GFDL CM3 0.0143 4.61 12.92

0.78 6 MIROC-ESM 0.0143 4.62 5.09

0.78 6 HadGEM2-ES 0.0143 4.63 6.94

0.83 7 MIROC-ESM-CHEM 0.0400 4.90 4.90

0.84 7 Scaled MIROC-ESM-CHEM 0.0400 4.93 4.93

0.90 8 Scaled GFDL CM3 0.0200 5.45 15.26

0.90 8 Scaled MIROC-ESM-CHEM 0.0200 5.45 5.45

0.95 9 Scaled GFDL CM3 0.0300 6.20 17.35

0.95 9 Scaled MIROC-ESM-CHEM 0.0300 6.20 6.20

0.99 10 Scaled GFDL CM3 0.0100 8.07 22.59

0.99 10 Scaled MIROC-ESM-CHEM 0.0100 8.07 8.07
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3. Results

a. Temperature projections

As expected, the equal-weighted CMIP5 ensemble

fails to produce the upper tail of the MAGICC6 global

temperature distribution; at the 95th percentile, the

CMIP5 projection for RCP 8.5 in 2080–99 is;28C cooler

than that of the MCPR and SMME methods. For the

lower tail and center of the cumulative distribution

function (CDF), however, the three methods are gen-

erally within 18C of one another (Fig. 4b).

Over the CONUS, the median change in 10-yr

running-average temperature for all RCPs is roughly

equivalent between the equal-weighted CMIP5 ensem-

ble and the SMME and MCPR methods (relative to

1981–2010; Fig. 5). The upper tail from the probabilistic

methods is also not well captured by the CMIP5 en-

semble, however: the 95th percentile from CMIP5 is

;18C less than that of the MCPR and SMME methods

(RCP 8.5 for 2080–99; Fig. 4d). There is agreement

among methods at the 95th percentile under the lowest

emissions pathway (RCP 2.6 for 2080–99), however:

2.68C (CMIP5), 2.68C (MCPR), and 2.78C (SMME)

(Table 5). In addition, all methods generally agree with

the likely (17th–83rd for SMME and MCPR; 5th–95th

for CMIP5) range of 2080–99 projected CONUS tem-

peratures (RCP 8.5): 3.48–6.78C (CMIP5), 3.48–6.98C
(SMME), and 3.58–6.58C (MCPR) (Table 5). For

CONUS subregions (defined in Fig. A7 of the online

supplement), the likely range from the probability dis-

tributions (17th–83rd) is generally within 0.58C of the

CMIP5 ensemble (5th–95th) (Table 5).

By the end of the century under RCP 8.5, all methods

project very similar likely ranges (17th–83rd for SMME

and MCPR; 5th–95th for CMIP5) of June–August (JJA)

CONUS temperature increase: 3.88–7.48C (CMIP5),

3.88–7.38C (SMME), and 3.88–7.38C (MCPR), with a 5%

chance that average JJA temperatures could rise by as

much as 9.28C (SMME and MCPR) (Table A3 in the

online supplement). Overall, late-century 5th- and

50th-percentile geographic patterns of warming are com-

parable amongmethods: in general, less than 18Cdifference

FIG. 3. (top) Global mean temperature trajectories for RCP 8.5 fromMAGICC6 (thick blue

line is the median and heavy-blue, medium-blue, and light-blue shadings are 17th–83rd, 5th–

95th, and 1st–99th percentiles), individual CMIP5 models (red), and model surrogates used in

SMME (gray). (bottom) The CDF of 2080–99 global mean temperature anomalies (relative to

the 1981–2010 normal) for RCP 8.5 (the blue curve is the CMIP5 model output CDF, the red

curve is for the MCPR and SCM projection, the green curve is for the SMME projection, and

blue dots and black diamonds indicate respectively the models and surrogates weighted in the

SMME projection. (Reproduced with permission from Columbia University Press.)
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in most areas [both December–February (DJF) and JJA]

(Figs. 6 and 7, respectively). The greatest 5th- and 50th-

percentile JJA warming occurs over the upper Great

Plains, the upper Midwest, and areas over the mountain

states in thewesternUnited States. These areas, in addition

to Alaska and New England, also warm the most during

DJF by the end of the century and are relatively consistent

among the three ensembles at the 5th and 50th percentiles.

At the 95th percentile, JJA temperature projections of the

SMME and MCPR methods are similar, with much of the

CONUS and Alaska experiencing at least a 98C rise in

temperature by the end of the century. There is more dis-

agreement for DJF, however: 95th-percentile DJF tem-

perature increases from theMCPRmethod are roughly 18–
48C warmer than those from the SMME method over the

Great Plains and the upper Midwest.

FIG. 4. Average (a) 2030–49 and (b) 2080–99 global temperature anomaly under RCP 8.5, estimated using the

unweightedCMIP5 ensemble (solid blue),MCPR (dashed green), and SMME (dot–dashed red).MAGICC6 global

temperature projections are by construction identical to MCPR. (c),(d) As in (a) and (b), but for the contiguous

United States. Also shown is average precipitation change for the U.S. Southwest under RCP 8.5 for (e) 2030–49

and (f) 2080–99.
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To compare the influence of the different methods on

projections of temperature extremes, we estimate the

number of ‘‘extremely warm’’ days for which the maxi-

mum temperature is above 358C and the number of

‘‘extremely cold’’ days for which the minimum temper-

ature is below 08C. Taking a population-weighted

average of historical county-level daily maximum tem-

peratures, we estimate that the average American ex-

periences nearly 15 days each year for which the

maximum temperature is greater than 358C and 74 days

for which the minimum temperature is less than 08C
(1981–2010). By 2080–99 under RCP 8.5, the CMIP5,

MCPR, and SMMEmethods all project that the number

of extremely warm days will likely (17th–83rd for

SMME and MCPR; 5th–95th for CMIP5) more than

triple (see Table A4 in the online supplement)—a rate

that is faster than that of annual temperatures, and all

methods agree that the number of extremely cold days

will likely be reduced by one-half (see Table A5 in the

online supplement). Population data are taken from the

2010 U.S. Census and are not projected to future time

periods. In spatial terms, very few differences exist

among methods in the expected (i.e., weighted ensem-

ble average) number of projected days of extremely

warm and cold temperatures (see Figs. A8 and A9, re-

spectively, in the online supplement). The MCPR and

SMME methods suggest that there is a 5% chance that

the current number of days of extremely warm tem-

perature could increase almost eightfold (see Table A4

in the online supplement) and that days of extremely

cold temperature could decline ;75% (see Table A5 in

the online supplement). By comparison, the hottest

CMIP5 model projects roughly a sevenfold increase in

extremely warm days and an ;64% decrease in ex-

tremely cold days (Fig. A10 in the online supplement).

b. Precipitation projections

For all methods that consider precipitation, we define

the likely range as the 17th–83rd percentiles and the

very likely range as the 5th–95th percentiles. By the end

of the twenty-first century, CONUS annual precipitation

will likely (67% probability; MCPR, SMME, and

CMIP5) increase (Table 6). In addition, all methods

project that the Northeast, Midwest, and upper Great

Plains are likely to experience more winter precipitation

around the same time (RCP 8.5) (see Table A6 in the

online supplement). We also find that wetter springs are

very likely (90% probability; MCPR, SMME, and

CMIP5) in the Northeast, Midwest, and upper Great

Plains and likely in the Northwest and Southeast

(MCPR, SMME, andCMIP5; see TableA7 in the online

supplement). An increase in autumn precipitation is

likely in the Northeast, Midwest, upper Great Plains,

and Southeast. In general, many of the CMIP5 models

project mid- and high-latitude precipitation increases,

with changes becoming more pronounced as tempera-

ture increases (see Collins et al. 2013, their Figs. 12.10

and 12.22). TheMCPR, SMME, and CMIP5 projections

FIG. 5. ProjectedmedianCONUS average annual temperature anomaly (10-yr running average, relative to 1981–

2010) from the unweighted CMIP5 ensemble (solid), SMME (dashed), and MCPR (dotted). The solid blue line

shows historical observations from theU.S. Historical ClimatologyNetwork, and the red, orange, yellow, and green

lines show RCP 8.5, RCP 6.0, RCP 4.5, and RCP 2.6, respectively. To the right of the line plot is shown the 2080–99

CONUS temperature anomaly, relative to 1981–2010, with the same color codes; whiskers indicate the 5th and 95th

percentiles, the tops and bottoms of the boxes are the 17th and 83rd percentiles, and the lines within the boxes are

the 50th percentile.
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show that the Southwest is likely to experience drier

springs, whereas drier summers are likely in the Great

Plains and the Northwest (Table A8 in the online sup-

plement). CMIP5 projects slightly drier average spring

conditions in the Southwest than do the probabilistic

ensembles (Figs. 5e,f and Fig. A11 in the online sup-

plement), but for other regions and time periods the

median precipitation projections from SMME are

slightly drier than those of CMIP5 and MCPR.

c. Sources of projection uncertainty

For decision-making purposes, it is useful to examine

future climate change projection uncertainty, which

can be decomposed into 1) forced, 2) unforced, and

TABLE 5. Projected regional annual temperature change (8C) under all RCPs for 2080–99: median and percentile ranges.

RCP 8.5 RCP 6.0 RCP 4.5 RCP 2.6

50 17–83 5–95 50 17–83 5–95 50 17–83 5–95 50 17–83 5–95

CONUS 1981–2010 normal: 11.98C
CMIP5 5.2 4.1–6.0 3.4–6.7 3.4 2.6–4.1 1.6–4.6 2.7 1.7–3.5 1.5–3.9 1.6 1.1–2.1 0.7–2.6

SMME 5.2 3.4–6.9 3.1–8.0 3.2 2.3–4.3 1.4–5.3 2.4 1.6–3.8 1.5–4.8 1.3 0.7–2.0 0.6–2.7

MCPR 4.5 3.5–6.5 3.0–8.2 3.1 2.2–4.5 1.8–5.7 2.3 1.6–3.5 1.3–4.9 1.3 0.8–2.0 0.6–2.6

Northeast 1981–2010 normal: 8.88C
CMIP5 5.2 4.3–6.5 3.6–7.1 3.4 2.6–4.4 1.6–4.8 2.8 1.7–3.7 1.5–4.3 1.8 1.2–2.2 0.7–2.7

SMME 5.2 3.6–7.1 3.1–8.8 3.2 2.2–4.6 1.5–5.4 2.6 1.6–4.0 1.4–4.6 1.4 0.7–2.1 0.6–3.2

MCPR 4.8 3.6–7.1 3.2–8.8 3.2 2.2–4.7 1.7–5.7 2.5 1.8–3.5 1.3–5.3 1.3 0.8–2.3 0.4–2.9

Southeast 1981–2010 normal: 16.68C
CMIP5 4.4 3.7–5.3 2.8–5.9 2.7 2.3–3.6 1.4–3.8 2.3 1.5–2.9 1.3–3.5 1.3 0.8–1.8 0.5–1.8

SMME 4.4 3.0–5.9 2.6–7.3 2.7 2.2–3.7 1.3–4.6 2.2 1.4–3.2 1.3–3.8 1.1 0.5–1.6 0.4–2.3

MCPR 3.9 3.0–6.0 2.7–7.3 2.6 1.9–3.7 1.4–4.5 1.9 1.4–2.9 1.1–4.1 0.9 0.5–1.6 0.3–2.2

South-Central 1981–2010 normal: 17.88C
CMIP5 4.9 3.9–5.9 3.3–6.1 3.2 2.5–3.9 1.4–4.0 2.4 1.8–3.1 1.2–3.5 1.4 0.9–2.0 0.6–2.1

SMME 4.9 3.3–6.2 3.0–7.6 2.8 2.5–3.9 1.3–4.8 2.3 1.8–3.5 1.2–4.4 1.2 0.4–1.8 0.3–2.5

MCPR 4.4 3.3–6.5 3.1–8.0 3.0 2.0–4.1 1.8–5.1 2.1 1.6–3.6 1.1–4.5 1.3 0.7–1.9 0.3–2.5

Upper Great Plains 1981–2010 normal: 8.98C
CMIP5 5.5 4.2–6.7 3.3–7.3 3.8 2.7–4.5 1.6–5.1 2.8 1.6–4.1 1.5–4.4 1.6 0.9–2.6 0.7–2.8

SMME 5.5 3.4–7.3 3.1–8.1 3.5 2.1–4.7 1.5–5.9 2.8 1.6–4.4 1.6–5.6 1.5 0.7–2.4 0.6–2.8

MCPR 4.8 3.6–7.2 3.2–8.9 3.4 2.3–4.8 1.8–6.0 2.4 1.8–3.7 1.4–5.5 1.4 0.8–2.4 0.6–3.1

Midwest 1981–2010 normal: 9.08C
CMIP5 5.7 4.2–6.9 3.5–7.9 3.7 2.7–4.5 1.8–5.5 2.9 1.8–4.3 1.5–4.7 1.8 1.0–2.4 0.7–3.1

SMME 5.7 3.5–7.9 3.4–8.7 3.6 2.2–4.8 1.6–5.9 2.7 1.7–4.5 1.5–5.8 1.6 0.7–2.2 0.6–3.1

MCPR 4.8 3.7–7.3 3.3–9.3 3.4 2.3–4.9 1.9–6.1 2.5 1.8–3.9 1.4–5.6 1.4 0.8–2.3 0.6–3.2

Northwest 1981–2010 normal: 9.58C
CMIP5 4.5 4.0–6.0 3.1–6.4 3.1 2.5–4.1 1.5–4.3 2.4 1.4–3.3 1.0–3.7 1.6 1.0–2.3 0.7–2.7

SMME 4.3 3.1–6.4 2.5–7.1 2.9 1.6–4.3 1.4–5.0 2.3 1.3–3.6 1.3–4.7 1.3 1.0–2.1 0.7–2.8

MCPR 4.2 3.3–6.3 2.9–7.7 2.8 1.9–4.0 1.6–5.0 2.2 1.3–3.3 1.0–5.0 1.3 0.8–2.1 0.6–2.9

California 1981–2010 normal: 15.58C
CMIP5 4.2 3.7–5.3 2.9–5.7 2.7 2.2–3.4 1.4–3.9 2.3 1.6–3.1 1.3–3.2 1.3 1.0–2.0 0.7–2.3

SMME 4.2 3.0–6.0 2.8–6.8 2.6 1.9–3.7 1.2–4.6 2.2 1.4–3.1 1.4–4.0 1.2 0.8–1.8 0.7–2.3

MCPR 4.0 3.0–5.6 2.5–7.3 2.6 1.8–3.8 1.6–4.7 2.0 1.3–3.0 1.0–4.3 1.2 0.7–1.7 0.5–2.4

Southwest 1981–2010 normal: 14.28C
CMIP5 4.7 4.0–6.1 3.6–6.6 3.2 2.6–4.0 1.5–4.6 2.6 1.7–3.2 1.5–3.9 1.4 0.9–2.0 0.7–2.5

SMME 4.7 3.8–6.9 3.4–8.4 2.9 2.3–4.1 1.4–5.0 2.4 1.7–3.7 1.5–4.7 1.2 0.8–1.8 0.7–2.5

MCPR 4.5 3.5–6.7 3.0–8.5 3.0 2.1–4.2 1.8–5.3 2.2 1.6–3.5 1.2–4.6 1.3 0.7–2.0 0.6–2.4

Rocky Mountain states 1981–2010 normal: 8.18C
CMIP5 5.3 4.2–6.3 3.4–7.2 3.4 2.7–4.4 1.6–4.9 2.9 1.8–3.7 1.4–4.3 1.6 1.1–2.2 0.7–3.0

SMME 5.3 3.5–7.5 3.3–8.3 3.3 2.2–4.5 1.5–5.5 2.6 1.6–4.2 1.5–5.4 1.3 0.7–2.2 0.7–3.0

MCPR 4.7 3.7–7.0 3.0–9.0 3.2 2.2–4.7 1.9–5.8 2.4 1.7–3.8 1.3–5.3 1.3 0.8–2.2 0.7–2.9

Alaska 1981–2010 normal: 21.78C
CMIP5 5.8 4.2–8.2 3.7–9.0 3.8 3.1–4.9 2.4–5.8 3.0 1.9–4.3 1.9–5.2 2.3 1.4–3.1 0.4–3.5

SMME 6.3 4.2–9.1 3.7–10.6 3.8 2.7–5.7 2.4–7.1 3.2 2.0–5.2 1.9–6.6 2.0 0.8–3.1 0.7–3.6

MCPR 6.2 4.5–8.8 4.0–12.5 4.0 2.7–5.8 2.3–7.4 3.2 2.1–4.7 1.5–6.9 1.8 1.0–2.9 0.5–4.2

Hawaii 1981–2010 normal: 23.68C
CMIP5 2.8 2.3–4.1 2.1–4.5 1.6 1.2–2.7 1.2–3.0 1.3 1.0–1.9 0.9–2.6 0.9 0.5–1.3 0.5–1.9

SMME 2.9 2.1–4.3 1.8–5.2 1.6 1.2–2.8 1.2–3.6 1.4 1.1–2.3 0.9–2.8 0.8 0.5–1.3 0.4–1.9

MCPR 2.9 2.3–4.3 2.1–5.2 1.8 1.3–2.6 1.1–3.5 1.5 1.0–2.3 0.7–3.0 0.8 0.5–1.4 0.3–2.0
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FIG. 6. Average winter (DJF) temperature anomaly in 2080–99 (relative to the 1981–2010 normal) under RCP 8.5 from (left) an equal-

weighted CMIP5 ensemble and the (center) SMME and (right) MCPR probabilistic methods. From top to bottom, shown are the 95th,

50th, and 5th percentiles for the CMIP5 ensemble and the 95th, 83rd, 50th, 17th, and 5th percentiles for SMME and MCPR.
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FIG. 7. As in Fig. 6, but for summer (JJA).
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3) scenario (i.e., emissions) uncertainties, each of which

can evolve with time and location (e.g., Hawkins and

Sutton 2009). Similar to Hawkins and Sutton (2009), we

estimate the evolution of the fractional contribution of

all three uncertainty components over the twenty-first

century for global and local scales. Hawkins and Sutton

(2009) assume that unforced variability is time invariant

(estimated as the residual from a fourth-order poly-

nomial fit to the modeled regional and global mean

temperatures), but we instead use the time series of

unforced variability calculated from pattern scaling.

(Methods for all component uncertainty calculations are

described in Appendix A of the online supplemental

material.)

TABLE 6. Projected regional annual precipitation change (%) under all RCPs for 2080–99: median and percentile ranges.

RCP 8.5 RCP 6.0 RCP 4.5 RCP 2.6

50 17–83 5–95 50 17–83 5–95 50 17–83 5–95 50 17–83 5–95

CONUS 1981–2010 normal: 750.2mm

CMIP5 6.5 20.7–12.9 25.1–15.2 3.6 0.6–8.2 21.9–17.4 4.5 1.1–8.9 21.1–11.3 3.6 20.3–9.6 21.8–11.5

SMME 6.5 0.9–13.8 25.1–20.1 3.6 0.6–8.2 20.6–14.5 4.3 20.1–8.4 21.1–11.2 3.4 2.1–8.8 21.8–11.5

MCPR 5.7 20.4–12.8 23.7–19.4 3.5 0.3–8.1 21.9–15.6 4.9 20.5–9.9 22.9–14.4 3.5 20.8–7.0 23.5–10.8

Northeast 1981–2010 normal: 1103.7mm

CMIP5 12.9 6.7–18.3 3.9–24.2 9.1 4.9–13.4 0.7–18.7 7.5 4.1–14.2 0.3–15.2 4.4 0.8–11.1 20.4–12.5

SMME 12.7 6.8–17.8 3.9–25.2 9.1 2.9–13.1 0.7–17.6 7.5 3.0–14.2 0.3–16.0 4.0 1.1–10.6 20.4–12.5

MCPR 12.2 5.9–17.9 2.5–24.9 9.3 3.3–15.3 20.5–19.1 7.8 2.9–12.6 20.2–19.2 3.6 0.1–8.5 22.1–13.7

Southeast 1981–2010 normal: 1303.9mm

CMIP5 5.6 22.8–15.4 211.3–24.6 2.3 20.1–13.2 25.2–17.4 5.2 1.4–13.0 21.4–17.0 5.3 0.7–12.9 24.5–15.6

SMME 5.0 21.4–23.0 211.3–26.4 2.3 23.0–13.2 25.2–17.4 4.2 0.6–9.9 21.4–13.4 3.2 0.7–10.1 24.5–15.6

MCPR 6.0 22.6–19.2 28.7–29.4 2.8 21.5–12.8 22.4–21.0 7.0 20.2–13.6 23.9–24.0 4.2 20.2–11.1 25.8–17.4

South-Central 1981–2010 normal: 917.9mm

CMIP5 21.1 210.7–7.1 219.6–12.4 21.6 28.9–3.5 213.0–13.7 20.9 24.7–5.8 29.6–13.6 1.5 23.2–7.8 26.1–8.3

SMME 20.4 26.4–8.8 219.6–11.1 21.4 28.9–5.0 213.0–7.0 20.9 26.9–5.2 210.0–13.6 4.2 23.2–7.4 26.1–8.3

MCPR 20.4 213.3–8.4 221.2–15.4 22.2 29.3–5.3 214.7–14.7 0.6 28.3–7.7 213.2–14.6 1.3 25.8–7.5 211.5–12.9

Upper Great Plains 1981–2010 normal: 588.7mm

CMIP5 4.2 21.9–13.7 210.0–20.0 1.2 21.9–12.3 26.4–23.0 3.8 21.8–7.7 26.7–15.0 4.7 21.3–8.7 24.3–10.7

SMME 4.3 0.5–14.0 25.3–27.6 3.5 21.1–13.3 25.7–20.0 3.5 21.8–7.7 26.5–12.4 4.7 21.1–7.3 24.3–10.7

MCPR 5.3 22.2–12.1 29.1–21.1 1.3 22.9–11.1 25.6–21.7 3.5 24.5–11.9 29.7–23.2 2.9 25.0–8.9 211.0–14.0

Midwest 1981–2010 normal: 923.4mm

CMIP5 10.0 1.9–15.0 23.1–21.2 5.8 0.1–11.6 21.1–19.7 6.0 0.8–9.6 24.1–14.6 4.2 20.0–7.9 22.1–9.9

SMME 12.5 5.1–19.3 20.3–25.8 5.8 0.1–10.1 20.7–16.4 6.0 0.8–9.0 24.1–10.9 4.2 1.8–7.6 22.1–9.9

MCPR 8.8 3.5–17.1 21.6–28.2 6.2 0.4–11.5 22.7–18.5 6.5 0.4–13.0 23.8–20.6 2.6 20.9–7.4 24.8–11.0

Northwest 1981–2010 normal: 767.8mm

CMIP5 7.0 0.1–15.9 212.3–20.6 7.4 3.0–11.0 0.7–19.1 6.5 20.3–11.7 25.4–16.9 5.2 21.3–10.1 22.2–15.8

SMME 7.0 26.7–14.6 29.2–20.6 7.4 2.0–9.9 0.7–14.7 7.3 20.3–11.7 22.3–16.9 0.8 22.2–7.1 23.0–15.8

MCPR 6.4 21.8–13.6 212.8–28.1 6.8 0.5–13.5 24.0–18.9 5.0 22.0–12.4 25.5–19.4 3.6 23.4–9.5 27.4–15.8

California 1981–2010 normal: 530.4mm

CMIP5 4.2 211.8–25.0 228.7–35.7 5.2 210.8–15.5 219.5–20.7 1.8 211.4–15.4 218.2–24.4 2.1 29.6–13.8 214.1–16.9

SMME 21.1 214.5–14.4 232.5–32.8 6.1 26.4–15.9 219.5–20.7 1.8 212.3–15.4 214.8–20.5 21.1 26.2–13.4 214.1–16.9

MCPR 3.0 210.1–15.7 216.0–27.8 0.5 28.0–14.0 215.4–23.2 1.6 210.8–13.3 219.1–23.9 3.1 27.4–11.8 214.2–19.5

Southwest 1981–2010 normal: 312.1mm

CMIP5 20.0 212.7–12.8 237.1–21.0 22.1 214.8–7.4 222.0–20.4 0.1 210.8–9.8 219.2–13.5 1.3 25.6–10.6 29.9–18.2

SMME 23.6 212.3–13.7 224.4–15.0 20.0 211.6–7.4 215.8–21.9 20.8 29.0–9.8 224.4–20.6 20.3 29.5–10.6 29.9–18.2

MCPR 1.4 29.8–7.1 224.8–16.3 21.1 210.2–7.9 215.8–13.8 0.1 210.2–7.1 217.9–15.2 1.9 27.9–8.5 215.5–14.0

Rocky Mountain states 1981–2010 normal: 330.6mm

CMIP5 13.3 1.9–19.9 25.9–27.4 10.1 4.1–20.9 21.6–28.5 7.1 21.1–17.2 25.9–24.1 10.0 2.6–15.4 25.3–17.5

SMME 13.6 1.9–26.1 26.5–38.0 12.4 2.3–20.9 20.5–28.2 10.1 21.1–17.2 25.9–25.1 8.2 1.0–14.9 25.3–17.5

MCPR 8.5 0.5–17.1 23.3–25.3 6.6 0.4–16.4 24.0–21.5 4.7 20.0–11.4 25.1–20.0 4.2 20.7–9.9 24.0–12.8

Alaska 1981–2010 normal: 541.2mm

CMIP5 31.5 25.5–38.6 18.9–49.5 16.6 13.4–20.2 8.4–30.0 15.3 11.4–19.9 7.6–25.8 8.8 6.9–15.0 1.0–22.6

SMME 27.0 1.4–37.9 0.5–49.5 15.8 0.7–18.8 20.1–28.0 14.2 1.1–19.1 0.1–25.8 8.0 0.1–13.2 20.1–22.6

MCPR 28.1 18.1–40.9 14.8–59.0 15.6 10.3–23.7 7.7–33.1 13.7 7.5–21.7 4.8–29.1 7.8 3.2–13.5 0.1–17.6

Hawaii 1981–2010 normal: 2287.7mm

CMIP5 2.3 26.1–12.1 221.0–28.1 21.3 211.4–8.4 217.6–22.7 0.9 27.7–6.6 210.8–9.3 3.6 21.3–10.9 27.9–21.8

SMME 0.5 24.9–7.8 220.3–17.9 20.9 210.8–6.9 217.6–13.4 20.5 26.1–6.6 210.8–9.3 0.3 21.3–8.7 27.9–12.6

MCPR 2.0 29.9–11.5 220.2–22.8 21.0 29.2–8.8 221.8–13.2 0.0 29.7–7.7 217.0–12.4 2.1 23.6–10.2 26.5–16.6
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Figure 8 shows the relative importance of each of the

three uncertainty components for annual temperature

globally and in four illustrative locations (Los Angeles,

California; New Orleans, Louisiana; Portland, Maine;

and Seattle,Washington). The year 2000 is chosen as the

reference point. Over the globe, unforced variability

dominates in the near term but falls to less than one-half

of total variance around 2020. Scenario uncertainty be-

comes larger than uncertainty in the forced response

around 2060 (Fig. 8a). For all four locations, up until the

middle of the twenty-first century, projection un-

certainty from unforced variability dominates. Only in

the 2050s–60s, as the variance associated with un-

certainty in the forced change and in the scenario in-

creases, does the variance from unforced variability fall

to less than one-half of the total. Consistent with re-

gional breakdowns from Hawkins and Sutton (2009),

there is very little projection uncertainty associated with

emissions scenarios until the 2040s.

d. Projection uncertainty due to unforced variability

Even at the global scale, the forced climate change

signal can sometimes be masked by unforced variability.

In most multimodel studies, a single realization of each

FIG. 8. Fraction of temperature projection variance (solid lines are CMIP5; dashed lines are SMME, and dotted

lines are MCPR) due to unforced (orange), forced (blue), and scenario (green) uncertainty for (a) the global

average, (b) Los Angeles, (c) New Orleans, (d) Portland, and (e) Seattle.
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GCM is used for the primary purpose of identifying

forced trends. By contrast, several runs of the same

model initialized from different initial states of the at-

mosphere can yield multiple estimates of weather for

any given year. If external forcing is constant, differ-

ences between simulations are solely attributed to in-

ternal variability. Although they are computationally

expensive, these ensembles can estimate near-term

projection uncertainty due to year-to-year fluctuations

in weather (e.g., Kay et al. 2015; Deser et al. 2014).

For example, Kay et al. (2015) construct a 30-member

ensemble with the CESM1(CAM5) model (Meehl et al.

2013; Hurrell et al. 2013). Each member simulation uses

slightly different atmospheric initial conditions while the

external anthropogenic forcing remains constant (RCP

8.5). The authors calculate 10- and 20-yr global tem-

perature trends starting from every year from 1990 to

2009 and from 2030 to 2049 and then construct histo-

grams of the trends. The spread of each distribution is an

estimate of projection uncertainty due to unforced var-

iability (Fig. 9, red histogram).

For a particular prescribed forcing, Kay et al. (2015)

note that the temperature projection spread of the

30-member CESM1(CAM5) ensemble aligns closely

with that of the spread of an ensemble of CMIP5 models

(both their own forced and unforced components). As

an extension, we further assess whether superimposing

just the unforced temperature projection components

FIG. 9. Distribution of (a) 10- and (b) 20-yr global temperature trends starting from every year between 1990 and

2009 using 30 different initializations of the CESM1(CAM5) fromKay et al. (2015) (red bars), the forced component

of theCESM1(CAM5) plus the unforced variability ofmodels in a 33-memberCMIP5 ensemble (green bars), and the

forced component of the CESM1(CAM5) plus the unforced variability of models from SMME (blue bars). (c),(d)As

in (a) and (b), but for trends starting from every year between 2030 and 2049. MCPR randomly samples CMIP5

unforced variability and so yields nearly identical results to the equal-weighted CMIP5 ensemble.
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from an ensemble of CMIP5 models with the CESM1

(CAM5) forced component (RCP 8.5) produces a sim-

ilar range of unforced variability. To do this, we add the

unforced-variability component of global temperature

from each model (and model surrogate in the cases

of the SMME and MCPR methods) to the CESM1

(CAM5) forced component (Fig. 9). The resulting dis-

tributions of trends from bothmethods closely alignwith

those fromKay et al. (2015) (red). Our approachmay be

beneficial for estimating projection uncertainty from

unforced variability when computational resources are

not available to facilitate additional ensemble simula-

tions. These results are global; regional climates are

generally more affected by unforced variability (Kay

et al. 2015). Therefore, further investigation should

consider how well records of unforced variability from

CMIP5 reproduce the spread of local trends from

multimember initial-condition ensembles.

4. Discussion

Both the SMME and MCPR methods generate joint

probability distributions of temperature and pre-

cipitation that originate from a prescribed PDF of global

mean temperature. These are joint PDFs because, for

each realization, we source the temperature and pre-

cipitation forced and unforced components from the

same GCM. In contrast to the equal-weighted CMIP5

ensemble, which also generates joint estimates, the

SMME and MCPR projections are consistent with

probabilistic global mean temperature projections. The

particular global mean temperature projections used

consider a distribution of model parameters that is

consistent with both historical observations and the

IPCC’s consensus on equilibrium climate sensitivity

and, thus, allow sampling of low-probability outcomes

that are outside the range of GCM ensembles. Accord-

ingly, the results of the SMME and MCPR methods are

well suited for use in probabilistic risk analyses and are

particularly ripe for integration with sector-specific im-

pact models and damage functions (e.g., Deschenês and

Greenstone 2011; Auffhammer and Aroonruengsawat

2011; Houser et al. 2015), including those jointly de-

pendent on temperature and precipitation (e.g.,

Schlenker and Roberts 2009). Probabilistic projections

facilitate impact estimates that incorporate physical

climate projection uncertainty, which may be especially

useful for decision-making under uncertain conditions.

Furthermore, the decomposition of projection variance

illustrates the importance of including unforced vari-

ability in estimates of future climate change. Applying

impact functions that are based solely on forced changes

would omit the primary driver of annual temperature

uncertainty through the middle of the twenty-first cen-

tury (Fig. 8).

The SMME and MCPR approaches span the range of

possibilities regarding the correlation between GCM

projections of forced changes and GCM projections of

unforced change. The SMME approach assumes that

these are perfectly correlated—the projected forced

pattern from a given model is always used with the un-

forced residuals from the same model. The MCPR ap-

proach, by contrast, assumes that these are fully

decoupled, which is unlikely to be true. Feedbacks be-

tween both components are possible. For instance, the

external forcingmay affect the properties of background

variability, such as its variance. We find strong positive

correlation between forced temperature change and

background variability at many locations and seasons

for temperature, but we find fewer cases of positive

correlation for precipitation (see Fig. A12 in the online

supplement). Positive correlation between components

(preserved in the SMME method) could widen the

probability distributions relative to assuming in-

dependence (as in the MCPR method), but, despite the

differences in the approaches between the two methods,

the tables indicate that there are few instances in which

the distributions of 20-yr average local temperature and

precipitation projections substantially deviate from one

another.

As comparedwith temperature, regional precipitation

estimates exhibit a wider range of outcomes in both the

direction and magnitude of changes. This is likely due to

disagreement in the response to anthropogenic forcing

over the United States across GCMs (Fig. A4 in the

online supplement). While future model development

efforts should address these disagreements, current ap-

proaches that may narrow the range of outcomes include

alternative model-weighting schemes, such as model

weights that are based in part on historical precipitation

performance rather than on projected global mean

temperature. Another example of projection disagree-

ment is the late-twenty-first-century median CONUS

temperature anomaly (RCP 8.5), in which the MCPR

projection is;0.58C cooler than the CMIP5 and SMME

projections (Fig. 5). This difference may be due to the

MCPR method selecting a greater number of models

that have a cooler average forced temperature pattern

over the CONUS.

Both the SMME and (especially) MCPR methods

rely upon pattern scaling, the limitations of which have

been extensively summarized by Tebaldi and Arblaster

(2014). These limitations should be kept in mind when

interpreting these results, in particular that forced pat-

terns represent long-term averages of climate parame-

ters and may omit nonlinear effects such as climate
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feedbacks that could alter rates of warming. Likewise,

pattern scaling is intended for scenarios with continu-

ously increasing forcing. For strong mitigation scenarios

in which forcing can be increasing and then decreasing

(e.g., RCP 2.6), separate patterns for each pathway may

be more appropriate. In the MCPR approach, the scal-

ing up of some of the coolest GCMs likely pushes the

boundaries of pattern scaling and may be inappropriate.

The same applies for scaling down the warmest GCMs.

In contrast, SMME selectively scales GCMs on the basis

of their global mean temperature, which can in turn lead

to a bias in model selection. In the SMME approach,

only the warmest CMIP5 models are scaled upward to

represent the tail of the PDF of global mean tempera-

ture. This consequently makes the high-end projections

vulnerable to the behavior of these models (e.g.,

MIROC-ESM-CHEM and GFDL CM3) and biases the

results toward these models’ patterns of local change

because they are sampled more often. This is in contrast

to 1) the low end of the distribution, where uncertainty is

better represented by a more diverse set of models, and

2) the MCPR approach, which considers all GCM pat-

terns throughout the probability distribution. An exer-

cise in which the models in the upper tail of the

distribution are changed is presented in Appendix A of

the online supplement.

It is important to stress that these results are con-

ditional upon one particular PDF of global mean

temperature change. These same methods from

probabilizing the CMIP5 projections can, however, be

employed with any PDF of global temperature change.

Moreover, in the presence of deep uncertainty, it might

be appropriate to apply more than one probability dis-

tribution using methods that rely on multiple priors

(e.g., Heal and Millner 2014). Both the SMME and

MCPR methods could be implemented in such a

framework. Moreover, extreme temperature pathways

above the 95% percentile fromMAGICC are not robust

or reliable.

Some climate risks may be less amenable to proba-

bilistic analysis that is based on PDFs like those pro-

duced here and may instead require scenario-based,

‘‘possibilistic’’ analysis (e.g., Whiteman et al. 2013).

These include risks arising from feedbacks that might

amplify global mean temperature increase that are not

captured in the SCM, such as omitted carbon-cycle

feedbacks that include the release of methane from

permafrost of hydrates (Archer 2007). These also in-

clude risks arising from factors affecting local pro-

jections that are poorly captured in GCMs, such as

midlatitude extremes that may be influenced by the

failure to properly pace Arctic sea ice loss (Francis and

Vavrus 2012).

5. Conclusions

While projections from GCM ensembles like those

produced by CMIP5 characterize the likely (17th–83rd

percentile) range of temperature and precipitation

change, they undersample extreme behavior, which may

be critical for effective risk management. In this study,

we present two alternative approaches for generating

time series of joint probabilistic projections of temper-

ature and precipitation that include tail risk. Projections

from both probabilistic methods and an equal-weighted

GCM ensemble are available online and are summa-

rized in the text and the online supplemental appendixes

for both multiple lead times and U.S. subregions.

The CMIP5 models substantially underestimate the

95th-percentile projections from the probabilistic

methods. We find that by the end of the twenty-first

century there is a 5% chance that annual CONUS

temperature change could be as high as ;88C over

1981–2010 levels—roughly 18Cwarmer than the hottest

CMIP5 model projection (RCP 8.5). We also find that

there is a 5% chance that the average American could

experience nearly 4 months of the year in which daily

maximum temperature is 308C or warmer. Strong CO2

emissions mitigation can greatly reduce these risks,

however. Under RCP 2.6, we project that increases in

CONUS temperature will very likely (90% probability)

remain at or under 2.78C by the end of the century and

that the number of extremely warm days experienced

by the average American could coincidently remain

below ;40 days yr21.

Decomposing GCM output into forced and unforced

components of climate change through pattern scaling

can provide records that are useful for uncertainty

quantification. We find that uncertainties associated

with local temperature projections through 2050 are

almost entirely due to unforced variability, with a small

fraction arising from uncertainty in the forced compo-

nent of climate change. By the end of the twenty-first

century, uncertainty associated with CO2 emissions

dominates both at global and local scales.
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