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1 Background

Rapid advancement in both climate science and economics over the last decade means there is an urgent

need to update the social cost of carbon and other greenhouse gases (collectively referred to as SC-GHGs),

as called for in both the 2017 National Academies of Sciences, Engineering, and Medicine (NASEM) report,

“Valuing Climate Damages,” (1 ) and the January 2021 Executive Order 13990, “Protecting Public Health

and the Environment and Restoring Science to Tackle the Climate Crisis.” Updating U.S. SC-GHG estimates

based on the recommendations of NASEM would return them to the frontier of understanding about the

risks from climate change (2 ).

The Climate Impact Lab (CIL) has developed the Data-driven Spatial Climate Impact

Model (DSCIM), a robust, empirically-based model for estimating SC-GHGs that is grounded

in the best available science and economics and is consistent with recommendations set out

by the NASEM (1). The theory, framework, and implementation of the CIL’s complete ap-

proach has been peer-reviewed and is published in Nature (3) and The Quarterly Journal of

Economics (4), with many technical elements, including the construction of empirical damage

functions and valuation of uncertain and unequal local impacts, published in our earlier 2017

Science article (5). In this user manual, we provide an overview of the key components of

an implementation of DSCIM, referred to as DSCIM-EPA, for the U.S. Environmental Pro-

tection Agency’s (EPA) September 2022 draft technical report, "Report on the Social Cost of

Greenhouse Gases: Estimates Incorporating Recent Scientific Advances."

DSCIM-EPA contains four major components, each of which is based on best-available science and has

been detailed in our peer-reviewed publications (3 , 4 , 5 ):

1. Socioeconomics and emissions projections DSCIM-EPA produces SC-GHGs that are consistent

with the NASEM recommendations, employing the Resources for the Future Socioeconomic Projections

(RFF-SPs). These provide probabilistic, country-level projections of population, GDP, and greenhouse gas

emissions, while allowing for some dependencies among individual scenario draws in each dimension. Further

detail can be found in Section 2.

2. Climate System Representation DSCIM-EPA incorporates the Finite Amplitude Impulse Response

(FaIR) model, which was identified by the NASEM as a simple climate model capable of meeting key criteria

related to the current scientific understanding of the timescales on which the climate system responds to CO2

emissions and of climate-carbon cycle feedbacks (1 ). In Section 3, we outline our implementation of FaIR,

to project the impact that an additional ton of CO2 or other GHG has on global mean surface temperature

(GMST).
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3. Damage Functions In Section 4, we outline our approach to generating damage functions that are

empirically derived and plausibly causal, capture local-level nonlinearities for the entire global population,

and are inclusive of both adaptation costs and benefits.

4. Discounting In Section 5, we outline DSCIM-EPA’s approach to discounting, supported by the latest

empirical evidence and able to capture uncertainty in future growth, as well as the insurance value of climate

mitigation that protects against lower probability, higher damage scenarios.

DSCIM will be an evolving model, continuously updated with new sectors and the latest advances in

science and economics. The DSCIM-EPA codebase for download and replication of SC-GHG values used by

EPA is available online at: https://github.com/ClimateImpactLab/dscim-epa.

2 Socioeconomics and Emissions Module

2.1 Historical income data

One of the most important measures of vulnerability to weather and climate in our analyses is the wealth

or incomes of those affected. This means that, in order to capture the differential vulnerability to climate

change in our empirical estimates, we need detailed subnational measures of income. In order to obtain

income data for each subnational region in the empirical analyses detailed in Section 4, we draw subnational

incomes from three main sources, using a combination of subnational gross domestic product (GDP) datasets

as well as globally-comprehensive national GDP data.

• Penn World Tables (PWT) national GDP.1 This dataset provides national-level incomes from

1950 to 2014 for most countries in the world. We use Penn World Tables version 9.0 to obtain national-

level income for all countries in our analyses.

• European Union subnational GDP.2 This dataset provides national and subnational level income

data for the European Union (EU) countries in our datasets. We use this dataset to obtain subnational

income at the Nomencalture of Territorial Units for Statistics (NUTS2) level of aggregation.3

• First administrative division (ADM1) subnational GDP from national sources (6). This

dataset provides national and subnational income data for 1,503 administrative regions from 83 coun-

tries. We use this dataset to obtain subnational level income data for all countries outside the EU.

Using these data, we construct a consistent multi-country panel of subnational incomes at the NUTS2

level for EU countries and ADM1 level for non-EU countries. To do so, we use the Eurostat (7 ) and
1Penn World Tables (PWT) database: https://www.rug.nl/ggdc/productivity/pwt/.
2Eurostat database: http://ec.europa.eu/eurostat/data/database.
3These data are used only in the mortality analysis detailed in Section C.1.
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Gennaioli et al. (6 ) to downscale the PWT national-level incomes. We prefer this approach to using the

subnational data directly, as there are known inconsistencies in measurement of subnational GDP across

countries. Thus, we make the assumption that the within-country distributions of GDP in the Eurostat and

Gennaioli et al. are accurate, but the exact levels may not be. We rely on the PWT data as a consistent

measure of GDP levels for all countries; thus, our subnational GDP estimates sum to national GDP from

PWT for all countries in the sample. All subnational income data are in constant 2005 dollars purchasing

power parity (PPP).

Subnational data collected by reference (6 ) are drawn from disparate sources, often using census data,

which are typically not annual, leading to an unbalanced panel. To construct annual values of income per

capita using these data, we linearly interpolate between years, before constructing the Bartlett kernel4 and

taking averages across all years. Full details of our construction of these data are provided in reference (4 ).

2.2 Future income, population, and emissions projections

In order to understand the economic impact of climate change in the future, we need to understand what

the economy will be like in the future. A standard approach to date has been to project future incomes and

populations in multiple different scenarios or pathways, for example in the widely-used shared socioeconomic

pathways (SSPs) (8 ). However, this often ignores the probability of the realization of any scenario, and this

probability of economic outcomes is essential for characterizing the uncertainty of SC-GHGs. To remedy

the challenges of such an approach, RFF have produced a set of 10,000 probabilistic projections of GDP,

population, and greenhouse gas emissions scenarios up to year 2300 that we employ in this analysis. These

socioeconomic projections (RFF-SPs) are intended to fully meet the criteria of the NASEM report, which

notes that purely statistical approaches may not fully inform future growth and should be combined with

expert judgement (1 ).

One major advantage of the RFF-SPs is that they establish a set of dependencies across GDP, population,

and emissions projections. For example, in a high economic growth projection, this may be associated with

technological improvements that could lower emissions intensity of GDP, and therefore be associated with

a lower emissions scenario. This correspondence is described more below. The data in the RFF-SPs are

provided in 5-year increments. To construct annual estimates, we linearly interpolate between the time-series

data in the RFF-SPs in log space for population and GDP at the global-level.

Future projections of GDP. For projections of GDP, RFF combine an econometric approach described

in Müller, Stock, and Watson (9 ) with expert elicitation from 10 notable scholars of growth. This approach

is fully described in Rennert et al. (10 ). The Müller, Stock, and Watson projections calculate values for

113 countries, and RFF imputes values for a further 71 countries from these in order to have country-level

projections for every country represented in the SSP database. The resulting median of GDP per capita
4The Bartlett kernel is a method of weighting the time series such that greater weight is given to more recent years.

3



growth rates varies between approximately 1-1.5 percent annually from 2020 to 2300, with a 1st and 99th

range of approximately 0-4 percent.5

Future projections of national populations. Population projections build upon the standard method-

ology employed by the United Nations for population projections up to 2100. In the RFF-SPs, RFF extend

this time-horizon to 2300 and combine the statistical methods with expert judgement from 9 leading de-

mographers. Methods and results are fully described in Raftery and Ševčíková (11 ). Median projections

generate a population of approximately 11 billion in 2100 and 7.5 billion in 2300.

Future projections of CO2 emissions A standard approach to date to model future climate based on

greenhouse gas emissions has been to use emissions pathways called Representative Concentration Pathways

(RCPs) developed for the Coupled Model Intercomparison Projects (CMIP). Rather than follow a purely

scenario-based approach like that of the RCPs, RFF produced a distribution of future possible emissions

trajectories based on expert elicitation (10 ). These values are then used to establish distributions of future

global emissions conditional on five different scenarios of GDP growth. In order to pair socioeconomic

simulations with emissions simulations, each randomly drawn economic simulation is associated with a

randomly drawn percentile of the emissions distribution for that level of GDP. Across all emissions scenarios,

the median trajectory represents a 50 percent decrease in CO2 emissions in 2100 from today’s level.

3 Climate Module

We aim to represent the climate system at the spatial and temporal resolution required to estimate empirical

damage functions, allowing for a baseline climate under some assumed trajectory of greenhouse gas emissions

to be established, as well as representation of a response to a marginal emission of a greenhouse gas. Because

the CIL approach derives global estimates of climate damages by calculating high-resolution, local impact

projections, the climate module must be broken into two separate but related components: (i) highly spatially

and temporally resolved historical climate data, and future climate projections from an ensemble of global

climate models (GCMs) combined with surrogate climate models under a range of emissions pathways,

which can be used to estimate spatially resolved damages and construct empirically derived global damage

functions; and (ii) projections of GMST and global mean sea level (GMSL) under a baseline climate and

in response to a marginal emission of GHG, including representation of the full probability distribution of

climate uncertainty with a large ensemble of simulations.6

5The RFF-SP GDP is in units of $2011. We convert to $2019 using 1.1346350337995368, which was obtained from the
FRED implicit GDP deflator, downloaded circa July 2020.

6In principle, one could compute a SC-GHG estimate by perturbing each GCM in the suite with a marginal emission of the
greenhouse gas and projecting damages for each location in both the original and perturbed simulations. However, in practice,
such a procedure would prevent the calculation of an SC-GHG for any climate trajectory that did not exactly coincide with
one of the GCMs, and would also be prohibitively costly from a computational standpoint. Instead, we rely on a probabilistic,
reduced-complexity climate-carbon cycle model, in combination with our empirically derived damage functions, to construct
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3.1 High resolution data and simulations

To create damage estimates at a highly resolved spatial and temporal resolution, historical climate data and

future climate data for multiple emissions scenarios at a high spatial and temporal resolution are required.

Historical climate data are used to estimate the relationship between temperature and impacts (called “dose

response" functions and described in Section 4.1) within a sector (e.g. the mortality-temperature relation-

ship), and projected future climate data are used to produce climate change damage estimates under several

possible emissions trajectories. In the next two sections, historical climate data sources are outlined, followed

by a description of the climate change projection data used and how probabilistic weights are assigned to

each future climate projection from each GCM in the surrogate model mixed ensemble (SMME), whose

method is described in (12 ).

3.1.1 Historical climate data

The primary historical climate data product used is the Global Meteorological Forcing Dataset (GMFD,

(13 )), which includes daily, global, gridded estimates of meteorological variables at the surface. GMFD

was derived from a weather forecasting reanalysis product (NCEP/NCAR), allowing for global coverage

where observations do not exist and corrected to observational weather data where available. GMFD data

is available at a 1/4 degree (about 25 km) horizontal resolution on a daily timescale from 1948-2010. Daily

surface temperature and daily total precipitation were used from GMFD. Several other historical climate

data sources were used on a sector-by-sector basis to investigate and ensure the consistency of estimated

response surfaces across differing climate datasets (Appendix C and references therein).

3.1.2 Future climate simulations

A global high-resolution (1/4 degree, daily) dataset of bias-corrected future climate projections produced by

NASA’s Earth Exchange program (NEX) is used, called the Global Daily Downscaled Projections (GDDP,

(14 )). This dataset includes projections that are bias corrected and downscaled from the output of 21

GCMs that are part of the Phase 5 CMIP (CMIP5) archive (15 ). The NEX-GDDP dataset was adjusted

by NASA using the Bias Correction Spatial Disaggregation (BCSD) statistical downscaling method, which

uses as a reference daily maximum and minimum temperature and daily precipitation data from GMFD

(1950-2005) and a traditional quantile mapping bias correction approach (16 , 14 ). Quantile mapping is

used to adjust the GCM outputs for historical and future time periods, and then the bias-corrected output

is spatially downscaled to a 1/4-degree resolution using a delta method that interpolates the daily bias

corrected changes relative to the GMFD climatology. For each GCM, three datasets are used: 1) simulated

response to historical climate forcing from 1850-2005, 2) simulated response to climate forcing through 2100

under RCP4.5 projected emissions from CMIP5, and 3) under RCP8.5 projected emissions from CMIP5.

SC-GHG estimates, consistent with the recommendations of the NASEM.
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Each sector requires a different climate variable transformation, but all are derived from daily maximum

and minimum temperature and/or daily total precipitation. When necessary, daily average temperature is

taken as the mean of daily maximum and minimum temperatures.

Because the CMIP5 ensemble of GCMs is not representative of a probabilistic distribution of climate

uncertainty but instead is an “ensemble of opportunity”, it fails to adequately represent tail outcomes.

Consequently, we use the SMME method (12 ) to assign probabilistic weights to the GCM climate projections

and synthesize “surrogate" GCMs to improve representation of the tails of the distribution. To accomplish

this, the SMME approach uses a weighting scheme that is based on projections of GMST from a reduced-

complexity climate model and a form of linear pattern scaling to construct model surrogates to fill in the tails

of the probability distribution that are not fully represented by the CMIP5 GCMs. The SMME approach

provides an additional 12 surrogate models (Figure 1) to the existing 21 NEX-GDDP GCMs. For more on

this, see Appendix B.2.3 of (4 ).

Figure 1: Future climate projections from the surrogate model mixed ensemble (SMME) Figure shows
the 21 climate models (outlined maps) and 12 model surrogates (maps without outlines) that are weighted such that
the weighted distribution of the 2080 to 2099 global mean surface temperature anomaly (∆GMST) exhibited by the
33 total models matches the probability distribution of estimated ∆GMST responses (blue-grey line) under RCP8.5.
For this construction, the anomaly is relative to the 1986-2005 average.
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3.2 SC-GHG simulations using the FaIR climate model emulator

The climate module of an SC-GHG calculation is meant to represent the climate response to the outputs

of the socioeconomic module, namely, emissions of greenhouse gases and other forcing agents, such that

a baseline climate and response to a marginal emission (or, “pulse") of GHG emissions – CO2, methane

(CH4), and nitrous oxide (N2O) in DSCIM-EPA – can be established. The steps for producing simulations

necessary for SC-GHG calculations, described in this section, are identical across gases except for the gas

species and size of the pulse (see Table 1). To represent the climate response with and without a pulse

of emissions, the module must convert the GHG emissions to atmospheric GHG concentrations, and in

turn to radiative forcing (how much the energy imbalance is perturbed by the additional greenhouse gas),

and finally a global average temperature response to that radiative forcing. The Finite Amplitude Impulse

Response (FaIR) reduced-complexity climate model(17 , 18 ) used extensively in the IPCC’s 6th Assessment

Report (AR6)(19 ), satisfies key criteria for such a module, including those outlined by NASEM (1 ), and

was identified by NASEM as an exemplar of a simple climate model meeting those criteria. These criteria

include transparency, simplicity, and ability to accurately and probabilistically represent climate and carbon

cycle systems and their uncertainties in a manner consistent with IPCC assessments and insights from more

complex Earth system models.

We use FaIR version 1.6.27 to be consistent with the version used in AR6 Working Group I (WG1)

and Working Group III (WG3) reports. To represent the possible set of future climate change, we sample

from the set of 10,000 probabilistic emissions pathways from Resources for the Future that, together with

probabilistic trajectories of GDP and population, are referred to here as RFF-SPs (10 ) and described in

Section 2. Each RFF-SP represents a possible future trajectory of GDP, population, and emissions of CO2,

CH4, and N2O, representing a wide range of emissions and climatic pathways (see the top row of Figure 2).

Following the method used in previous estimates of SC-GHGs (1 ), projections start in the current period

(here defined as 2020) and run through the year 2300.

The SC-GHGs are estimates of the cost to society of emitting a marginal tonne of the GHG. The RFF-

SPs represent a probabilistic set of baseline, or "control", climate change scenarios, whereas to represent a

set of "pulse" scenarios, a pulse of a GHG emission is added to each of the RFF-SPs in the specified pulse

year. The difference between the pulse and control simulations characterizes the climate response to a pulse

of GHG emissions. Table 1 lists the pulse sizes for each GHG estimated in DSCIM-EPA – CO2, CH4, and

N2O – in gas species units and as entered into the FaIR model emissions array8. Pulse years evaluated are:

2020, 2030, 2040, 2050, 2060, 2070, and 2080.
7https://github.com/OMS-NetZero/FAIR/tree/v1.6.2
8FaIR expects an emissions array of 39 different species, 3 of which are included in the RFF-SPs. Emissions for other

gases and for the time range outside of 2020-2300 are taken from the CMIP6 SSP2-4.5 emissions pathway as provided by the
Reduced Complexity Model Intercomparison Project (www.rcmip.org), which includes historical emissions for past years. These
emissions are concatenated with the RFF-SPs in order to run FaIR from 1750-2500 but are otherwise trimmed to 2020-2300 for
the SC-GHG calculations.

9 https://www.rcmip.org/
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GHG Pulse size (species units) Pulse size (FaIR input)

CO2 3.66 Gt CO2 1.0 GtC

CH4 40.0 Mt CH4 40.0 Mt CH4

N2O 1.57 Mt N2O 1.0 Mt N2

Table 1: Pulse sizes were chosen to be approximately 10% of year 2020 emissions for each gas. The reference 2020
emissions were taken from the globally aggregated SSP3-7.0 emissions produced for the Reduced Complexity Model
Intercomparison Project (RCMIP)9. SSP3-7.0 is a standard emissions pathway from CMIP6. “Mt‘ is Megatonne,
“Gt" is Gigatonne, “GtC" is Gigatonne of Carbon.

Figure 2: Baseline and difference between the pulse and baseline for key climate variables in the
FaIR simple climate model: Each panel shows the temporal trajectory of key variables in FaIR that underlie
our calculation of the SC-GHGs. All panels show percentiles (1-99 range, light gray shading; 5-95 range, dark
gray shading; median, dashed curve) across the 10,000 RFF-SP-FaIR climate parameter draws. Row one) RFF-
SP emissions (column one) and the response to the RFF-SP emissions. These constitute the baseline (“control")
simulations. The RFF-SPs include CO2 , CH4, and N2O emissions trajectories, but only CO2 baseline emissions in
units of gigatonnes of carbon (GtC) are shown here (top row, first column). The values for total radiative forcing,
global mean surface temperature, and sea level rise are shown as anomalies from the 2001-2010 average, while emissions
and CO2 concentration are absolute values. Row two) As Row one, but showing the difference between the 2020
CO2 “pulse" simulations, in which a pulse of carbon emissions in year 2020 is added to the baseline carbon emissions
for each RFF-SP draw, and the control simulations for each climate variable. The pulse size is identical across all
RFF-SP draws and thus, there is no uncertainty in column one. Row three) As Row two, but for a pulse of Methane
(CH4). Row four) As Row two but for a pulse of Nitrous Oxide (N2O). All GHG baseline and pulse emissions in
column one are shown in the units in which they are entered into FaIR. See Table 1.

A key criterion for the climate module is the ability to probabilistically represent the uncertainty in

the carbon-climate system in line with the latest scientific evidence. To satisfy this, we run FaIR with
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a set of calibrated input parameters that were developed for use in the AR6 and determine the global

mean temperature response to emissions (see (19 ) Box 7.1 and Chapter 7 Supplementary Material 7.SM.2

for additional details). These parameters are the result of constraining a 1 million-member ensemble of

emissions-driven FaIR simulations over 1750-2019, as described in Ch. 7 of AR6 WG1 and its Supplementary

Material (Section 7SM.2). The input parameters sample uncertainty in effective radiative forcing (ERF), the

climate response (surface and deep ocean effective heat capacities, efficacy of ocean heat uptake, heat transfer

coefficient between the surface and deep ocean layers, and climate feedback parameter) and the carbon cycle

(airborne fraction of CO2, and change in airborne fraction of CO2). The constrained parameter set includes

2,237 members (20 )10 that satisfy criteria for matching the trend in historical global average temperature, the

assessed historical ocean heat uptake, 2014 atmospheric CO2 concentrations, and airborne fraction of CO2

concentrations in transient CO2 increase simulations. These parameters yield climate simulations that are

consistent with the assessed ranges of equilibrium climate sensitivity (ECS) and transient climate response

(TCR), and the ranges of GMST change for the AR6 emissions scenarios (see Ch 7 Cross-Chapter Box 7.1

of (19 )).

A full representation of the emissions uncertainty combined with the climate uncertainty, even in a

lightweight climate model such as FaIR, is infeasible as it requires over 22 million simulations (10,000 RFF-

SPs x 2,237 climate parameters) for each pulse gas and pulse year. Instead, the 10,000 RFF-SPs were jointly

sampled with the 2,237 climate parameters 10,000 times with replacement. The result is a set of 10,000 draws

of an RFF-SP emissions pathway paired with one set of FaIR climate parameters. The final ensemble of

RFF-SP-FaIR-climate-parameter draws yields 6,282 unique RFF-SPs, 2,208 unique climate parameters, and

9,997 unique pairs. The RFF-SP to FaIR input parameter pairings were selected to ensure consistency across

socioeconomics and climate modules used within the EPA report. The climate response to the combined

RFF-SP emissions and climate uncertainty is shown in Figure 2.

For the coastal sector, we also must represent GMSL with and without a pulse, as we do GMST, in order

to compute marginal coastal damages conditional on GMSL, due to a pulse of GHG emissions. Because

GMSL is not an output of the FaIR model, a process for deriving time series of GMSL from GMST time

series is developed and involves using the Semi-Empirical Sea Level (SESL) model to calculate GMSLs from

GMSTs with and without a pulse. These derived GMSLs are differenced to produce a pulse “delta", which is

then added to probabilistic baseline GMSL trajectories modeled using the Framework for Assessing Changes

to Sea-level (FACTS), used in the IPCC’s AR6(21 ). We use a quantile mapping approach to align the

pulse deltas with the baseline GMSL time series to produce GMSL trajectories with and without a pulse.

Lastly, because the FACTS-based baselines are limited to the CMIP6 emissions pathways and do not include

RFF-SP emissions, we approximate baseline GMSL time series for each RFF-SP-FaIR climate parameter

draw using an emulation approach. Details of the development of the GMSL time series are described in

Appendix C.5.
10The v1.0 parameter set was downloaded from https://doi.org/10.5281/zenodo.5513022.
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These probabilistic simulations of global mean surface temperature and global mean sea level are used

to derive probabilistic damage streams due to the baseline emissions and to a marginal pulse of emissions.

4 Damages Module

Here we first describe our approach to creating global “damage functions” that are reflective of the emissions,

population, and economy represented in each of the RFF-SP simulations, and that relate changes in GMST

(and GMSL for coastal damages) to changes in global damages11. This process involves estimating high

resolution local dose response functions (Section 4.1.1) for each economic sector that we model12, projecting

those local dose response functions into the future to estimate local damages in the future (Section 4.1.2), and

aggregating local damages to the globe and estimating global damage functions (Section 4.2), with sector-

specific details provided in Appendix C. We then describe the application of the global damage functions to

probabilistic FaIR GMST and GMSL trajectories to arrive at streams of damages representative of RFF-SP

socioeconomics and emissions uncertainty and climate uncertainty (Section 4.3). Note that the location- and

sector-specific outputs are consistent across DSCIM-EPA user options and pre-computed, due to the large

compute footprint associated with producing these outputs.

4.1 Dose response function estimation and projection

4.1.1 Estimation

Our approach to estimating damages begins with collecting globally representative, high-resolution datasets

of socioeconomic outcomes, such as death rates and electricity demand, matched to the high-resolution

historical weather data described in section 3.1.1. We analyze these data using sophisticated econometric

techniques, which account for the many geographic, institutional, and cultural differences between regions as

well as trends over time, in order to estimate causal (rather than correlative) relationships between weather

and our outcomes of interest. The result of this analysis is a location-specific “dose response” function: a

description of the nonlinear effect of changes in temperature (and other weather variables for some sectors)

on an outcome of interest. To capture the potential for adaptation and dynamic vulnerability, we include

climate and socioeconomics in this estimation process, allowing the dose response function to vary with

income levels and climatic adaptation.

The exact form of the dose response function varies across sectors but has the same purpose - estimating

how climate variables like temperature affect some outcome (e.g. mortality risk, energy consumption), while

accounting for adaptation based on access to resources (i.e. income) and the long-run climate. In general, a

location-specific annual damage outcome takes the form:
11At the end of this Section, we also describe damage functions that include only direct damages within the territorial U.S.
12These are mortality, energy, labor, agriculture. We also model the coastal sector, but it relies on a process-based model

and does not estimate dose response functions.
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Dscit =fsc(Tit , LONGRUNCLIMi, log(GDPpc)i) + qsc(OTHERCLIMit) + αsci + γsct + ϵscit (1)

where s indicates economic sector, c indicates category of damage outcome (e.g. age group for mortality, fuel

category for energy) with c varying by sector, i denotes the spatial regions of analysis (e.g. county, state,

country, which varies by sector), and t indicates the time period (e.g. day, year, which varies by sector). Thus,

Dscit is the sector-specific, category-specific damage outcome in spatial unit i at time period t. Dscit is a

function of the temperature vector that captures the nonlinear transformations of daily grid-cell temperature

(Tit), the long-run climate variable (LONGRUNCLIMi), and the natural logarithm of annual per capita

GDP (GDPpci).13 The long-run climate and annual per capita GDP together determine how sensitive the

outcome in a given location is to daily weather variations. Dscit may also be a function of transformations

of other climate variables like precipitation, noted generally here as qscs(OTHERCLIMit).14

Our econometric specifications for each sector and category include some form of location-specific and

time period-specific intercepts (αsci and γsct, respectively), referred to as “fixed effects".15 Location fixed

effects flexibly account for all permanent differences in the outcome between locations (for example, due to

geography or history), while time period fixed effects flexibly account for trends in the outcome that are

common across locations (for example, due to macroeconomic fluctuations or technological innovations). The

use of fixed effects purges our estimates of confounding variation, enabling us to identify a plausibly causal

effect of temperature variation on the outcome. Finally, ϵscit denotes the stochastic error term.

The parameters that describe the dose-response function are estimated with uncertainty, which must be

accounted for when using them to project the impacts of future climate change (see below). We account

for this statistical uncertainty by resampling parameter values from their joint probability distribution. For

greater detail on the econometric estimation in the mortality, energy, labor, and agriculture sectors, see (4 )

Section IV, (3 ) Methods: Econometric estimation of energy–temperature responses, (22 ) Section 4, and

(23 ) Methods section, respectively, with summaries provided in Appendix C.

4.1.2 Projections

Next, we apply this dose-response function to future projections of local temperatures and socioeconomics.

While we use the RFF-SPs for SC-GHG calculations, their use in global climate models (GCMs) is infeasible,

since the time required to compute climate changes at the resolution of the models necessitates using far

fewer scenarios of emissions. The climate science community has centered their analyses of climate change

in the GCMs on the RCP scenarios from CMIP5. These RCPs trace out possible emissions scenarios that

range from cases with ambitious mitigation of CO2 to ones in which emissions continue to grow for much of
13The exact parameterization of the long-run climate varies by sector.
14The exact parameterization of other climate variables varies by sector.
15The exact parameterization of the fixed effects varies by sector.
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this century. In our estimates of climate damages, we use climate projection data from two RCPs (RCP4.5

and RCP8.5) from CMIP5, as discussed in Section 3.1.2, in order to fill out the probable space of future

warming.

A similar logic leads us to calculate damages using a more limited set of socioeconomic projections than

the RFF-SPs. The shared socioeconomic pathways (SSPs) database provides these projections across five

separate scenarios for the economic future of the planet. The SSPs propose a set of plausible scenarios

of socioeconomic development over the 21st century in the absence of climate impacts and policy for use

by the Integrated Assessment Modeling (IAM) and Impacts, Adaptation, and Vulnerability (IAV) scientific

communities (8 ). Projections of national incomes under the SSP scenarios are provided by the Organization

for Economic Co-operation and Development (OECD) Env-Growth model (24 ) and the International Insti-

tute for Applied Systems Analysis (IIASA) GDP model (25 ). The estimates of climate damages in DSCIM

incorporate the SSP2, SSP3, and SSP4 scenarios under each of these two models, in combination with the

two emissions pathways described above.

For our projections we apply the dose-response functions to the CMIP5 projected weather data, for each

GCM. We perform projections across the multiple drivers of uncertainty in future projections, consisting of:

(1) different emissions scenarios (across RCPs), (2) different modeled changes in climate (across GCMs), (3)

different socioeconomic scenarios (across SSPs), (4) different modeled country-level incomes (across economic

models), and (5) different values of the statistical uncertainty describing the dose-response functions.

To isolate the impacts of climate change from changes in vulnerability driven by socioeconomics, we

also apply the dose-response functions to a scenario in which climate remains in its historical state while

economies continue to develop. The final impacts of climate change are the difference between the full pro-

jected outcomes, including all future changes, and the projected outcomes accounting only for socioeconomic

changes. Formally, the impact of climate change (Impact) in impact region r16, at year y for economic sector

s and damage category c takes the form:

Impactscry,lpjd = fsc,d(Try,lp , LONGRUNCLIMry,lp, log(GDPpc)ry,j)︸ ︷︷ ︸
(A) dose-response function applied to climate-change scenario

− fsc,d(Try0 , LONGRUNCLIMry0 , log(GDPpc)ry,j)︸ ︷︷ ︸
(B) dose-response function applied to historical climate scenario

.
(2)

To capture multiple drivers of uncertainty, projections are separately carried out under each GCM l, RCP p,

SSP j17, and resampled estimate d of dose-response function parameters. The impact described in Equation

2 represents the change in a given outcome due to a shift in the temperature distribution under climate
16There are 24,378 approximately county-sized impact regions globally, each of which is agglomerated from second adminis-

trative units based on maintaining approximately similar population across regions and approximately similar average climate
within each region. Details can be found in (4 ) and (3 )

17Note that a subscript for growth model has been omitted to simplify notation.
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change, accounting for the evolution of the dose-response function as locations warm and incomes increase.

This construct isolates the additional impact of climate change net of other factors (for example, income) that

will change in the future. The two objects being differenced, (A) and (B), are identical in every way, except

for the climate.18 Thus, we evaluate (B) using future levels of income but use T and LONGRUNCLIM

values from a historical baseline y0.19 20

The resulting impacts are typically in physical units, such as changes in death rates and agricultural yields.

To translate these into economic damages, we apply a monetary value per physical unit. For example, in the

mortality sector, the value of a statistical life (VSL)21 represents how much individuals are willing to pay

to reduce mortality risk in their own life and has the units of dollars per death. By multiplying projected

changes in death rates from climate change with population (in each age category), we estimate total changes

in premature deaths, which we then multiply with the VSL and sum across age categories to estimate total

economic losses in dollar terms (26 ).22 The VSL is used for valuation of heat and cold-related deaths in the

mortality sector and for flood-related deaths in the coastal sector (the coastal sector also includes valuation

of abandoned property, inundated land, flood-related property damages, protective measure construction,

relocation, and wetland loss). The translation of impacts from physical units to monetary damages is specific

to each sector and is described in detail in Appendix C. We also estimate the costs of adaptation, based on

the observed changes in vulnerability that are represented in the dose-response functions. The total economic

losses combine direct losses from climate change (expressed in Equation 2) and indirect costs of adaptation

to avoid further climate change losses.

This procedure provides us with total economic losses in each location, year, and sector under each GCM,

RCP, and SSP, for multiple draws capturing uncertainty in dose-response function parameter estimates. One

way to handle such uncertainty is to simply calculate a mean over these multiple draws for each sector, before

combining all sectors and aggregating to the globe. However, this fails to account for the fact that individuals

are risk-averse and are willing to pay a risk premium to avoid potentially severe damages. For DSCIM-EPA

results provided here, we calculate a value from the multiple draws that incorporates this risk premium by

computing a certainty equivalent (CE) over the draws, referred to as the "risk averse" result (in contrast

to the "risk neutral" result). The calculation is performed using a constant relative risk aversion (CRRA)

utility function for various values of the elasticity of marginal utility of consumption, (denoted η)23 as follows

(see Appendix A for additional details)24. Relative to historical climatology (h), for each sector s, SSP j,
18All fixed effects and other controls included in Equation 1 cancel out and are therefore omitted.
19Note that the agriculture sector projects precipitation variables in addition to temperature, and they are also from the

historical baseline.
20We define the baseline period y0 as having the climatology of 1981-2005.
21We use the U.S. EPA’s VSL for 2020 amounting to $9,926,524.56 (2019$). Additional details are in Appendix section C.1
22It should be noted that the VSL does not represent the value of an individual life. Rather it represents willingness-to-pay

for a collective risk reduction of one “statistical life". For instance, if, on average, each individual is willing to pay $100 per
year to reduce his/her probability of dying by 0.00001, then collectively a group of 100,000 people would be willing-to-pay $10
million per year to avoid the loss of one “statistical life".

23Eta values are η = [1.016010255, 1.244459066, 1.421158116].
24To execute this calculation, we set a subsistence value for consumption equal to the minimum baseline income projected

across all year, region, SSP combinations, which is equal to $39.39. For each region-year-SSP, we constrain the maximum
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GCM l, RCP p and in each impact region r and year y, we compute damages per capita accounting for the

risk premium as:

Damages Per Capitasrjlpy = CEnoCC
srjlhy − CECC

srjlpy

where CECC
srjlpy =

((
1

K

∑
d∈K

C1−η
srjdlpy

1− η

)
∗ (1− η)

) 1
1−η

(3)

and Csrjdlpy = GDPpcrjy − Damagessrjdlpy

CECC represents the CE of consumption over dose response function uncertainty draws under climate

change and is a function of η and local per capita consumption, C, in each of the draws, which we define as

local GDPpc less damages in each draw. We similarly calculate the CE of consumption under a no-climate-

change counterfactual scenario (CEnoCC), where uncertainty in local consumption exists due to variability

in the local climate around its historical mean, and subtract it from the CECC to obtain the change in CE

damages due to changes in climate25. We thus obtain a single measure that captures total economic losses

(including the risk premium) in each location and year, within each GCM, RCP, and SSP combination and

for each sector and η value.26.

Note that our treatment of coastal damages from sea level rise uses a different modeling framework, due

largely to the fact that historical sea level rise has been relatively minimal in most locations. This leaves

little opportunity for robust empirical estimation of an economic response function that would be globally

representative and applicable to future sea level rise. Instead, we employ a parameterized optimization

model (pyCIAM, (27 )) that calculates adaptation strategies and projects resulting future damages for 9,096

coastal segments using a least-cost optimization framework. Damages represented in this framework include

(a) the cost of permanent inundation of immobile capital or land; extreme sea level-related (b) damages to

capital and (c) mortality; (d) expenditures on protection (i.e. infrastructure construction); (e) relocation

costs; and (f) wetland loss. Because of the use of this process-based approach, no empirical estimation step

using historical outcomes is used within the coastal sector, and the projections for the coastal sector stem

from a more process-based methodology.

damage draw such that consumption does not fall below the subsistence level.
25If we ignore this baseline uncertainty, we would overstate the risk premium by conflating weather variation with climate

uncertainty. We therefore treat consumption uncertainty due to variability in the historical baseline climate in a similar
manner as we treat uncertain damages due to climate change. Specifically, we calculate local no-climate-change consumption
for each impact region in each Monte Carlo draw as GDP per capita minus climate “damages" due to historical climate
variability (i.e., Csrjdlhy = GDPpcrjy − “Damages"srjdlhy , where the subscript h denotes the historical climatology instead
of climate change under RCP p. We then take the certainty equivalent of consumption across these draws (i.e., CEnoCC

srjlhy =((
1
K

∑
d∈K

C
1−η
srjdlhy

1−η

)
∗ (1− η)

) 1
1−η

).

26Note that accounting for the risk premium across climate uncertainty is handled by stochastic Ramsey discounting on the
damages derived from probabilistic outputs from the FaIR reduce complexity climate model after global damage functions have
been estimated. This is described in Section 5.1
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4.2 Damage function estimation

The valued losses including the risk premium described in the previous section are used to estimate a global

“risk averse damage function” for each sector and for the combined sectors. The damage function describes

the globally aggregated economic losses that result from a given change in the global average climate. The

"risk averse" damage function is fit to globally aggregated impact region level damages where a CE across

dose response function draws (also referred to as Monte Carlo draws) has been taken in each impact region,

collapsing the damages in each impact region as shown in Equation 3 before summation to the globe for each

GCM × RCP × SSP combination. In contrast, a "risk neutral" damage function would be fit to globally

aggregated impact region level damages where a mean across dose response function draws has been taken.

To construct such a risk averse damage function, we first index projected global economic losses in each

year from 2020-2099, under each GCM × RCP pairing, to the change in GMST (∆GMST) projected in the

five-year window centered around that year under that pairing.27 For each sector s28, SSP j, and year y29,

we then estimate a damage function that is quadratic in ∆GMST, fit to points from 33 GCMs (l) across the

two RCP emissions scenarios (p)30. This takes the form:

Damagesslpyj = βsyj
1 ∆GMSTylp + βsyj

2 ∆GMST 2
ylp + ϵslpyj (4)

where ϵslpyj denotes the stochastic error term. The coefficients31 βsyj
1 and βsyj

2 are estimated by ordinary

least squares. For all sectors except coastal, damage functions of the same functional form are estimated

on ∆GMST variables. However, because coastal damages are a function of the change in GMSL (∆GMSL)

rather than ∆GMST, a damage function of the same form is estimated on ∆GMSL and ∆GMSL2, where the

GMSL values are as described in Appendix C.5. The damage function representing the combined 5-sector

damages is a concatenation of the estimated damage function on (agriculture + mortality + energy + labor)

with the damage function estimated on coastal, such that the damage function has four coefficients, two of

which act on ∆GMST variables and two of which act on ∆GMSL variables. Thus damages under a given

∆GMST and ∆GMSL pair are obtained by summing damages from coastal (conditional on ∆GMSL) and

damages for the combined 4 sectors of agriculture, mortality, energy, and labor (conditional on ∆GMST).

This results in a set of damage functions that spans the space of the GMSTs and GMSLs and global

damages that are based on the three SSP socioeconomic pathways32 and two RCP emissions pathways. To
27∆GMST is relative to the 2001-2010 average.
28Sectors include agriculture, coastal, energy, labor, mortality, and their combination. The five-sector combination consists of

summing damages across sectors at the impact region level for each GCM and dose response function draw, before computing
either the mean (risk neutral) or the CE (risk averse) in that impact region, and aggregating to the globe.

29The damage function also depends on η but we leave out a subscript for parsimony.
30In actuality, the damage functions are fit to points inclusive of a 5-year centered window around y.
31Damage function coefficients are installed during DSCIM-EPA installation and setup, after which

they reside inside of /PATH/TO/dscim-epa/input/damagefunctions/.DSCIM − EPAisavailableathttps :
//github.com/ClimateImpactLab/dscim− epa.

32Note the damage functions are also spanning two growth models, IIASA and OECD. In total there are 6 risk averse damage
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Figure 3: RFF-SP Risk Averse Global Damage Functions: Risk averse global damage functions for all 10,000
RFF-SP draws (this maps to 6,282 unique damage functions due to the sampling with replacement described in
Section 3.2) are shown for the combined sectors conditional on ∆GMST (agriculture + mortality + energy + labor;
left panel) and for coastal, conditional on ∆GMSL (right panel) for the year 2099. The draw-specific combination
of these two sets of damage functions makes up the combined five-sector damage functions used in the combined
SC-GHG calculation.

construct damage functions that are based on the RFF-SPs (10 ), which are used to calculate the SC-GHGs,

we use these SSP-based damage functions to emulate global damage functions for an arbitrary draw of an

RFF-SP. The same approach is used for emulating damage functions that are conditional on ∆GMST and

those conditional on ∆GMSL. The emulation procedure is as follows:

1. We denominate our estimated annual SSP-based damage functions as a share of annual global GDP

from the SSP.

2. We calculate a set of weights, constrained to sum to unity, that, when used to take a weighted average of

global GDP across SSP-growth models, most closely recovers the global GDP in the RFF-SP simulation

run that we wish to emulate.

3. We apply these weights to take a weighted average of the redenominated damage functions from Step

1.

4. Finally, we convert this new, emulated RFF-SP-specific damage function into an economy-wide measure

of total dollar damages by multiplying by RFF-SP-specific global GDP. This results in a damage

function denominated in total dollar damages.

This emulation procedure provides us with damage functions for each of the RFF-SP draws k which are

then used in SC-GHG calculations. Full details about the emulator can be found in Appendix B. Figure 3

shows the combined-sector GMST-based global risk-averse damage functions on the left and global coastal

functions – 3 SSPs x 2 growth models – each of which is fit on GMST points from 2 RCPs (RCP4.5 and RCP8.5 from CMIP5).
Because GMSL is not an output of the GCM data we use, a different method to compute GMSL points is developed and
described in Appendix C.5.
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risk-averse damage functions on the right for all RFF-SP draws. These damage functions are independent

of pulse gas, pulse size, pulse year, FaIR climate draw33, Weitzman parameter (see Section 5.2), discounting

type, and pure rate of time preference ρ.

Lastly, because the GCM simulations and the SSPs end in 2099 but SC-GHG calculations depend on

damages out to 2300, an extrapolation of these time-varying damage functions must be performed. To

calculate the damage function in years y > 2099, we extrapolate the 2099 damage function as follows: Let

βs,y,k
1 and βs,y,k

2 denote the coefficients of the sector s, year y emulated damage function under RFF-SP

simulation run k. To obtain coefficients for years y > 2099, the 2099 damage function coefficients are

multiplied by the ratio of RFF-SP simulation k global GDP in year y to its 2099 global GDP, i.e.:

βs,y,k
m = βs,2099,k

m × RFFGDPky

RFFGDPk,2099
(5)

for m = {1, 2}.

A set of SC-GHGs limited to the direct damages occurring within the territorial United States is also

available. These are computed using the same method that has just been described above, except only

impact regions within the United States border are included in the aggregation step. This is only a partial

accounting of the cost of climate change to US citizens and residents because it excludes international

transmission mechanisms, like trade, cross-border investment and migration, damage to the assets of U.S.

citizens and residents outside the United States, or consideration of how GHG emission reduction activity

within the United States impacts emissions in other countries.

4.3 Calculation of probabilistic damage streams using FaIR climate outputs

Once a damage function is estimated, it can be applied to the probabilistic ∆GMST trajectories produced by

FaIR and ∆GMSL trajectories emulated with SESL and FACTS (as described in Section 3.2). The procedure

to produce damage streams is as follows:

For each sector s, year y, and for each RFF-SP draw k (RFF-SP paired with a climate parameter set)34:

1. Calculate damages due to climate change using the emulated RFF-SP specific damage function coef-

ficients. We refer to these damages as Damagesnopulse, since they are computed using ∆ GMST from

the FaIR model run with RFF-SP k baseline emissions, without an additional pulse of greenhouse gas
33The damage functions are independent of FaIR climate draw, except for the fact that the climate parameter is paired with

an RFF-SP draw
34These calculations also vary by eta value (η) because the damage function coefficients vary by η. This is due to the η in

the CRRA utility function used within each impact region to calculate the damages including the risk premium to avoid severe
damages (See Equation 3), before aggregation to the globe for damage function estimation. We leave out a subscript for eta for
parsimony.
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emissions35:

Damagesnopulsesyk = βsyk
1 ∆GMSTnopulse

yk + βsyk
2 (∆GMSTnopulse

yk )2. (6)

2. Calculate global consumption under climate change by subtracting these baseline damages from RFF-

SP GDP. In DSCIM-EPA this object is referred to as “global consumption no pulse".

GlobalCnopulse
syk = RFFGDPyk − Damagesnopulsesyk (7)

Then, for each pulse year u and greenhouse gas o:

3. Calculate damages due to climate change under the RFF-SP emissions plus a “pulse" of emissions in

the pulse year as in Equation 636. The pulse of emissions in year u causes damages in all years y >= u.

Damagespulsesykuo = βsyk
1 ∆GMSTpulse

ykuo + βsyk
2 (∆GMSTpulse

ykuo )
2. (8)

4. Calculate global consumption under climate change with the pulse by subtracting these pulse damages

from RFF-SP GDP. In DSCIM-EPA this object is referred to as "global consumption pulse".

GlobalCpulse
sykuo = RFFGDPyk − Damagespulsesykuo (9)

5. Calculate marginal damages by subtracting damages without the pulse from damages with a pulse.

MarginalDamagesskyuo = Damagespulsesykuo − Damagesnopulsesyk (10)

This results in a set of 10,000 probabilistic time series of marginal damages due to a pulse of GHG

emissions, as well as global consumption under climate change with and without an extra pulse of emissions,

for each sector, GHG, and pulse year. Marginal damages can then be discounted as described in Section 5

using discount factors calculated from the global consumption, GlobalCnopulse, paths. The final SC-GHG

calculation is described in detail in Section 6 after a summary of steps leading up to the final calculation.
35When computing the coastal partial SC-GHG and the coastal component of the combined 5-sector SC-GHG, the same

approach is used except ∆GMSLnopulse
yk is used in place of the ∆GMSTnopulse

yk variables.
36When computing the coastal partial SC-GHG and the coastal component of the combined 5-sector SC-GHG, the same

approach is used except ∆GMSLpulse
ykuo is used in place of the ∆GMSTpulse

ykuo variables.
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5 Discounting Module & Valuation

5.1 Discounting Procedure

In the DSCIM-EPA SC-GHG calculation, we implement continuous time Ramsey discounting to discount

damages back to the pulse year u.37 Specifically, we use the Ramsey discount rate consistent with the rate of

consumption growth in each RFF-SP draw k, inclusive of climate damages. The stochastic discount factor

for damages in RFF-SP draw k and in year y > u is set as follows:

SDFky =

y∏
τ=u+1

e−(ρ+ηg̃c
kτ ) (11)

where the rate of consumption growth inclusive of climate damages, g̃ckτ , is given by ln
(

ckτ

ck,τ−1

)
. In each

year τ , ckτ 38 is given by Equation 9— baseline global GDP in the given RFF-SP draw minus the damages

associated with the GMST anomaly from the RFF-SP FaIR climate parameter draw39. The parameter ρ

measures the pure rate of time preference, while η is the elasticity of marginal utility of consumption.

Note that since marginal damages in each draw are discounted at the stochastic discount rate consistent

with that draw,40 this discounting approach adjusts for all dimensions of the intertemporal tradeoff: the rate

of baseline economic growth, the severity of climate change, and the correlation between payoffs from climate

change mitigation and the future state of the world. Each dollar of future losses is thus valued according to

the Ramsey formula’s comparison of future and present marginal utility appropriate to that particular draw.

We implement this discounting approach using three alternative sets of {η, ρ} combinations obtained

from (10 ) to match near-term rates of 1.5 percent, 2.0 percent, and 2.5 percent41.

Lastly, the expected SC-GHG is computed by taking the net present value of discounted marginal damages

in each RFF-SP draw, applying an adjustment to account for consumption uncertainty before the pulse year,

and then averaging the adjusted net present values across RFF-SP draws. This process is described in detail

in Step 8. of the next section, Section 6.

5.2 The Weitzman parameter

To confront issues related to climate uncertainty where damages can exceed global GDP causing mathemat-

ically undefined stochastic discount factors, we introduce an additional parameter inspired by the work of
37In Section 6.1 Step 8, we describe an additional procedure to discount damages back to the present, accounting for uncer-

tainty between the present and the pulse year u.
38For compactness, we use the variable symbol “cky" instead of “GlobalCnopulse", as in the previous section, to represent

global consumption no pulse.
39As described in 3.2, the RFF-SPs and FaIR climate parameters are sampled jointly such that an RFF-SP is paired 1:1 with

a set of FaIR climate parameters.
40Specifically, marginal damages in a given year under a given RFF-SP draw are discounted by multiplying by the SDF for

that year and draw.
41These η and ρ combinations are η, ρ = [1.016010255, 9.149608e-05], [1.244459066, 0.00197263997], [1.421158116,

0.00461878399] matching 1.5%, 2.0%, and 2.5% near-term rates, respectively.
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Martin Weitzman (e.g. (28 )) that caps global damages due to climate change. We define the “Weitzman

parameter", ω, to be a scalar fraction from 0-1 that is used to calculate the “Weitzman threshold". The

Weitzman threshold, Cky, is the value of the share of contemporaneous GDP in each year and RFF-SP

that serves to top-code marginal utility and constrain global damages such that the Ramsey discounting

calculation is always defined.

Formally, for unadjusted consumption cky (baseline global GDP, RFFGDPky, minus the damage draw)

and Weitzman threshold Cky, we define an adjusted consumption value, ĉky, as follows:

ĉky =


cky if cky ≥ Cky

U−1

(
U(Cky)− U ′(Cky)× (Cky − cky)

)
if cky < Cky

(12)

where

Cky = ω ∗ RFFGDPky (13)

Implemented with a CRRA utility function with utility curvature parameter η, ĉky becomes:

ĉky =


cky if cky ≥ Cky[
C1−η − (1− η) ∗ (C−η

ky )(Cky − cky)

] 1
1−η

if cky < Cky

(14)

The intuition of this equation is that the Weitzman parameter top codes the marginal utility of con-

sumption at the value of C, allowing each dollar of losses below C to have the same marginal utility as that

at the level of C. Total utility is then calculated including the utility costs below the bottom coded value,

and then converted back into an equivalent consumption value, ĉky, by inverting the utility function. Then

ĉky enters directly into the Ramsey discounting calculation in a standard way, replacing cky. In this way,

the choice of the Weitzman parameter, ω and by proxy the Weitzman threshold, Cky, governs how quickly

global consumption declines under bad climate outcomes.

6 Putting it all together: the SC-GHG calculation

The previous sections describe the DSCIM-EPA implementation of each of the SC-GHG component modules

following recommendations by the NASEM(1 ). Next we summarize how DSCIM-EPA uses these modules

in a step-by-step process for calculating sector-specific and combined SC-GHGs for a range of pulse years.

6.1 Step by step process to SC-GHGs

1. Local Climate Damage Projections: This step is described in detail in Section 4.1.2 and Appendix

C.
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We generate Monte Carlo draws of local climate damages across dose response function uncertainty

for the five sectors – agriculture, coastal, energy, labor, and mortality – using projections for 24,378

approximately U.S. county-sized “impact regions” spanning the world in each future year. These damage

projections are pre-computed for CMIP5 RCP4.5 and RCP8.5 emissions pathways paired with SSP2,

3, and 4 using GDP growth from IIASA and from OECD growth models, resulting in 12 projection

simulations (each with Monte Carlo uncertainty) for each of 33 GCMs, for the combined five sectors,

and for each of the five individual sectors.

This step varies by the following DSCIM-EPA user options: sector.

2. Calculation of the Local Welfare Costs of Climate Change: This step is described in detail in

Section 4.1.2.

Next, for each of the 12 outputs in Step 1, we calculate the local welfare loss from the range of projected

climate damages in each impact region in each GCM, for each sector and for the total damages across

the five sectors42. DSCIM-EPA presents SC-GHGs using a calculation that incorporates the local risk

premium to avoid potentially severe harm arising from econometric uncertainty.

This calculation proceeds as follows. For each damage realization, we calculate local consumption for

each impact region in each Monte Carlo draw as GDP per capita minus climate damages. We then

take the CE of consumption across Monte Carlo draws to calculate expected welfare with climate

change, accounting for risk aversion to the uncertainty in the damage estimates.4344 We similarly

calculate expected welfare under a no-climate-change counterfactual scenario, where uncertainty in

local consumption exists due to variability in the local climate around its historical mean.45 The

damage caused by climate change, including the risk premium, is then calculated as expected welfare

under a no-climate-change counterfactual scenario minus expected welfare with climate change.

This step varies by the following DSCIM-EPA user options: η, sector

3. Climate Damage Aggregation: This step is described in Section 4.2.

Once we calculate local damages inclusive of the risk premium over damage uncertainty in Step 2, we

aggregate local climate damages to the global level46 for each GCM, RCP, SSP-growth model, and

future year to estimate a damage function for each future year and SSP-growth model scenario.
42Damages are totalled by summing the sectors for each Monte Carlo draw.
43We use the constant relative risk aversion (CRRA) utility for this calculation with three different values of the elasticity of

marginal utility of consumption (η = [1.016010255, 1.244459066, 1.421158116]).
44To execute this calculation, we set a subsistence value for local consumption equal to the minimum baseline income projected

across all year, region, SSP combinations. We constrain the maximum damage draw such that consumption does not fall below
the subsistence level.

45If we ignore this baseline uncertainty, we would overstate the risk premium. We therefore treat consumption uncertainty
due to variability in the historical baseline climate in a similar manner as we treat uncertain damages due to climate change.
Specifically, we calculate local no-climate-change consumption for each impact region in each Monte Carlo draw as GDP per
capita minus climate “damages" due to historical climate variability. Taking the certainty equivalent of consumption across
these draws yields expected welfare in the no-climate-change counterfactual scenario.

46Or we aggregate local climate damages to the U.S. level in the case of SC-GHGs that include only the direct damages
within the territorial U.S.
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This step varies by the following DSCIM-EPA user options: η, “global" versus “territorial U.S.", sector

4. Damage Function Estimation in Each Future Year: This step is described in Section 4.2.

The aggregated damages from Step 3 span the range of GMST over which to estimate sector damage

functions (except coastal), as described in Section 4 and Appendix C. Probabilistic sea level rise pro-

jections from LocalizeSL span the range of GMSL over which to estimate the coastal damage function,

as described in Appendix C.5. Damage functions are estimated on globally (or U.S.) aggregated points

from all GCMs under CMIP5 RCP4.5 and RCP8.5 emissions such that a greater range of GMST and

GMSL are supported. These damage functions are quadratic in GMST and GMSL and have zero-

intercept47. As described in 4.2 and Appendix B, these six SSP-based damage functions are then

used to emulate a damage function for each of the 10,000 RFF-SP draws to emulate what aggre-

gated damages may have looked like if a fully resolved spatial projection of each RFF-SP emissions

and socioeconomics pathway could be executed. The result is a set of 10,000 RFF-SP-based damage

functions48.

This step varies by the following DSCIM-EPA user options: η, “global" versus “territorial U.S.", sector.

For efficiency and ease of replication for the EPA report, DSCIM-EPA begins computations from pre-

computed RFF-SP damage function coefficients.

5. FaIR Model Projections of Changes in GMST and GMSL: This step is described in detail in

Section 3.2.

We use the FaIR reduced-complexity climate model to simulate GMST trajectories based on the 10,000

draws of RFF-SP and climate parameter pairings representing the probabilistic distribution of the

change in GMST under emissions and climate uncertainty, with and without the marginal pulse of

GHG emissions. We use a Semi-Empirical Sea Level model to obtain probabilistic GMSL estimates

consistent with each GMST Monte Carlo draw, as described in Section C.5. One set of 10,000 control

(or baseline) simulations are produced, and 21 sets of 10,000 pulse simulations are produced – one for

each of 3 gases (CO2, CH4, and N2O) × 7 pulse years (2020, 2030, 2040, 2050, 2060, 2070, and 2080)

for both GMST and GMSL variables. These FaIR simulations are pre-computed and as such pulse size

is predetermined (see Table 1) and not modifiable, and pulse year and gas can only be selected from

the above lists.49

47When combining damage functions from coastal and non-coastal sectors, we estimate 1-dimensional damage functions (i.e.
vs. GMST and GMSL, respectively) separately and then combine the outputs. While this approach will not capture the risk
premium associated with the simultaneous experience of coastal and non-coastal losses, it avoids large coefficient biases that
can be introduced when estimating a 2-dimensional damage function (i.e. vs. GMST and GMSL, simultaneously) that is
constrained to pass through the origin.

48There are 6,282 unique RFF-SPs in the 10,000 RFF-SP draws as described in 3.2, however we produce a set of damage
function coefficients for all 10,000 RFF-SP draws even though some are duplicate for ease of computation. Damage functions
do not vary by FaIR climate parameter.

49One could in principle generate new GMST and GMSL paths in response to RFF-SP emissions baselines – using FaIR or
other simple climate and sea level models – that represent different GHGs, pulse years, or pulse sizes. These could then be set
as DSCIM-EPA inputs, provided the file and data structure were identical to existing data inputs.
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This step varies by the following DSCIM-EPA user options: GHG, pulse year

6. Calculation of Undiscounted Marginal Damages Associated with a Pulse of Emissions:

This step is described in Section 4.3.

We use the 10,000 RFF-SP FaIR climate paramter draws for each GHG and pulse year from Step 5 to

calculate the damage caused by the climate change baseline (emissions from the RFF-SP draw), and

by a pulse of GHG emissions added to the baseline in the pulse year. Damage functions estimated in

Step 4 are applied to the GMST temperature outputs (or GMSL in the case of the coastal sector and

combined five sectors) from Step 5 to obtain damages in each future year with and without a pulse

of emissions. Marginal damages are equal to damages with a pulse of emissions minus the damages

without a pulse. Marginal damages are produced for each of the 10,000 RFF-SP draws, for each η.

This step varies by the following DSCIM-EPA user options: η, “global" versus “territorial U.S.", sector,

GHG, pulse year

7. Discount the Stream of Future Damages: This step is described in detail in Section 5.1.

We discount, using stochastic Ramsey discounting, each of the streams of marginal damages caused by

the pulse of emissions from Step 6 by taking into account future GDP after removing climate damages.

Discount factors are a function of “global consumption no pulse" after top-coding the marginal utility

based on the Weitzman parameter.

This step varies by the following DSCIM-EPA user options: η, the pure rate of time preference ρ50,

“global" versus “territorial U.S.", sector, GHG, pulse year 51

8. Calculate the Cost Per Ton of GHG

The discounted streams of marginal damages for each RFF-SP draw from Step 7 represent the distri-

bution of present values in each year from the pulse year to 2300. To compute the SC-GHG for each of

the 10,000 RFF-SP draws k, we calculate the net present value of marginal damages in the draw (i.e.,

by summing present values from pulse year u to 2300) and divide this value by the number of tons of

GHG in the pulse. This results in a distribution over k of the social cost per ton of greenhouse gas

emissions for each sector s, GHG o, and pulse year u.

PDVDamagesskuo =

2300∑
y=u

SDFsky ∗ MarginalDamagesskyuo (15)

50η and ρ can only be selected in pre-determined pairs that represent near-term discount rates of 1.5%, 2.0%, 2.5% from (10 )
51Note that for the SC-GHG calculations that include only direct damages occurring within the territorial U.S., the stochastic

discount factor is still computed using global GDP less global damages, since U.S. damages would be occurring in a world with
global damages. In this way this SC-GHG is discounted using the same rate and can be directly compared to the global
SC-GHG.
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SC-GHGskuo =
PDVDamagesskuo

Tonspulse
(16)

These SC-GHGs do not account for the uncertainty in growth occurring before the pulse year when

marginal damages are zero. To account for this, an adjustment factor is computed that adjusts SC-

GHGskuo, such that for pulse year u (adopting the notation for global consumption no pulse, csky from

Section 5):

AdjustmentFactorsk,y=u = (
csk,y=u

RFFPopk,y=u

)−η ∗ 1

E[csk,y=u]
(17)

CESC-GHGskuo = AdjustmentFactorsku ∗ SC-GHGskuo (18)

In this way, the CESC-GHG, or “certainty equivalent" SC-GHG, is the social cost of greenhouse gas

that has been adjusted to include the risk premium for consumption uncertainty occurring before the

pulse year. See the EPA’s Report on the Social Cost of Greenhouse Gases for a detailed explanation

of the motivation and derivation of this approach.

The final expected SC-GHG, ExpectedSC-GHG, is the mean over all 10,000 CESC-GHGs52 and con-

verted from 2019$ to 2020$53:

ExpectedSC-GHGsuo =
1

10000

10000∑
k=1

CESC-GHGskuo (19)

This step varies by the following DSCIM-EPA user options: η, the pure rate of time preference ρ,

“global" versus “territorial U.S.", sector, GHG, pulse year.

6.2 DSCIM-EPA user options and defaults

52This procedure adjusts for all dimensions of the intertemporal tradeoff. Taking the mean over draw-specific Ramsey
discounted SC-GHGs is in fact equivalent to calculating the difference between certainty equivalents (over RFF-SP draws) of
global consumption without a pulse and with a pulse, and then applying annual stochastic discount factors that reflect the
growth rate of the (no pulse) global consumption certainty equivalent.

53We report SC-GHGs in 2020$ using the 2019 to 2020 price level deflator 113.648/112.294, obtained from
https://apps.bea.gov/iTable/iTable.cfm?reqid=19step=3isuri=1selectallyears = 0nipatablelist = 13series = afirstyear =
2005lastyear = 2020scale = −99categories = surveythetable =
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User Option Options Default Notes

Pulse year 2020, 2030, 2040, 2050 All pulse years
2060, 2070, 2080

Sector combined (CAMEL) combined 5-sector combined SC-GHG is
internally referred to as CAMEL

coastal
agriculture
mortality
energy
labor

η, ρ [1.016010255, 9.149608e-05] 1.5% near-term rate
[1.244459066, 0.00197263997] all rates 2.0% near-term rate
[1.421158116, 0.00461878399] 2.5% near-term rate

Domain Global, Territorial U.S. Global Scope of damages
included in the SC-GHGs,
global or direct damages
within territorial U.S.

Settings Value Notes

GHG CO2 , CH4, N2O All GHGs
pulse_size 1 GtC CO2 pulse size

40 MtCH4 CH4 pulse size
1 MtN2 N2O pulse size

weitzman_parameter 0.5 50% of RFFGDP
fair_aggregation “uncollapsed" draw-specific discounting

produces distribution
of SC-GHGs

Table 2: This table describes the DSCIM-EPA user options (top table), and settings for other options that are not
modifiable (bottom table).

25



A Appendix: Accounting for risk aversion

A.1 The certainty equivalent

Figure 4 illustrates the concept of risk aversion via a heuristic example in which uncertain consumption

under climate change takes a value of either CCC1 or CCC2 with equal probability. Mean damages from

climate change (i.e., “risk-neutral damages”) are equal to the difference between the no climate change level

of consumption (CnoCC) and the average level of consumption under climate change (C
CC

). The certainty

equivalent level of consumption under climate change (CECC) is defined as the level of consumption that

provides utility equal to the expected utility of consumption across the 2 probabilistic possible states of the

world. The difference between the no climate change level of consumption and the certainty equivalent level

of consumption under climate change represents the “risk-averse damages” from climate change, reflecting

the additional amount that risk-averse individuals are willing to pay over and above the average loss from

climate change in order to avoid the chance of especially bad outcomes.

Figure 4: CE cartoon Here is a schematic that describes the CE calculation.

A.2 Illustration of risk averse damage function

As described in the main text (Section 4.1.2), dose response function uncertainty is sampled within each

impact region and GCM resulting in uncertain damages depending on how sensitive the damage is to local
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weather. In order to account for the risk-averse agent who is willing to pay to avoid the possibility of

severe harm, a CE across damage uncertainty within impact region and GCM is calculated. Alternatively,

to represent an agent that is risk neutral and unwilling to pay for such certainty, a mean across damage

uncertainty within impact region and GCM is taken.

Once damages representing dose response function uncertainty are calculated for each impact region, they

are aggregated across all regions of the world to the global level separately for each global climate model in

each future year. Each climate model projects a different change in global mean surface temperature relative

to 2001-2010 (∆GMST ) in each emissions scenario, allowing us to estimate how global damages in a given

year vary with ∆GMST in that year. The type of global damage function is determined by whether the

local damage uncertainty was collapsed with a CE (risk averse) or a mean (risk neutral). Figure 5 illustrates

such damage functions for the end-of-century.
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Figure 5: Illustrative damage functions with and without risk aversion Illustration of a damage function
estimation with and without risk aversion in underlying spatially aggregated damages. Each data point represents
globally aggregated damages from a single GCM-RCP-SSP-growthmodel for a 5 year period at the end of the century,
plotted against that GCM-RCP’s global average temperature at the end of the century. The green curve is estimated
using the green dots, each of which represents a GCM realization of globally-aggregated risk-averse damages. The
blue curve is estimated through the blue dots, each of which represents a GCM realization of globally-aggregated
risk-neutral damages.
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B Appendix: Damage Function Emulation

Climate damages are initially calculated for a small number of socioeconomic scenarios, consisting of SSP

trajectories for SSP2, SSP3, and SSP4, as produced by the OECD Env-Growth model and the IIASA GDP

model (6 scenarios total). To evaluate damages across the full range of RFF-SPs, we apply an emulation

scheme. Conceptually, this scheme interpolates between the SSPs in order to match the country-level GDPs

designated by a given RFF-SP.

The emulation scheme is estimated and applied separately for each 5-year period, t, of each RFF-SP, k.

For target period t, we have a snapshot consisting of GDP and population levels for each country according

to the RFF-SP and each SSP. Within this period, we describe the RFF-SP country-level incomes levels as a

unit simplex interpolation of SSP income levels in the same period. That is, we want to select values αjkt

for which

RFFLogIncomekit ≈
∑
j

αjktSSPLogIncomejit

for all countries i, across SSP j, such that
∑

j αjkt = 1 for each period of each RFF-SP. The natural log

of GDP per capita for each country is used, since this is the form of income used in the raw projections.

Specifically,

RFFLogIncomekit = log(RFFGDPkit/RFFPopulationkit)

SSPLogIncomejit = log(SSPGDPjit/SSPPopulationjit)

using the country-level GDP and population from the RFF-SPs and SSPs.

Since an exact solution is generally not possible, we minimize a weighted sum of country-level errors

according to the following optimization problem for each RFF-SP scenario and period:

min
{αjkt}

∑
i

wkit

∣∣∣∣∣∣RFFLogIncomekit −

∑
j

αjktSSPLogIncomejit

∣∣∣∣∣∣
such that

∑
j

αjkt = 1,

αjkt ≥ 0 ∀j

The weighting values, wkit, are set equal to the RFF-SP GDP level for the given country. This allows the

optimization to produce a result closer to global GDP. The optimization is solved with linear programming

using the Gurobi optimizer (29 ).

Next, we apply the coefficients from the unit simplex interpolation to global damage functions, which

we estimated for each SSP within each period, to construct an interpolated damage function. The SSP

damage functions are normalized by the global SSP GDP in this step, and then these fractional damages are
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multiplied by global RFF GDP to recover level damages. As a result, total damages for RFF-SPs beyond the

range of the SSPs are extrapolated linearly. That is, given the SSP-specific damage functions, djt(∆GMST ),

providing dollar damages in period t as a function of climatic temperature, we calculate

d′kt(∆GMST) = RFFGlobalGDPkt

∑
j

αjkt
djt(∆GMST)/SSPGlobalGDPjt

where SSPGlobalGDPjt =
∑

i SSPGDPjit and RFFGlobalGDPkt =
∑

i RFFGDPkit.
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C Appendix: Sector-specific Damages Details

Each sector has different data and method requirements for dose response estimation and projection, and

damage function estimation. A description of sector-specific details is included in the following sub-sections.

C.1 Mortality

Figure 6: Empirically derived mortality-only damage functions Both panels show damage functions relating
empirically derived total global mortality damages to anomalies in global mean surface temperature (∆GMST) under socioe-
conomic scenario SSP3. In panel A, each point (red = RCP8.5, blue = RCP4.5) indicates the value of the full mortality risk
of climate change in a single year (ranging from 2095 to 2100) for a single simulation of a single climate model, accounting
for both costs and benefits of adaptation. The black line is the quadratic damage function estimated through these points.
The distribution of temperature anomalies at end of century (2095-2100) under two emissions scenarios across our 33 climate
models is in the bottom panel. In panel B, the end-of-century damage function is repeated. Damage functions are shown in
dark blue for every 10 years pre-2100, each of which is estimated analogously to the end-of-century damage function and is
shown covering the support of ∆GMST values observed in the SMME climate models for the associated year. Our projection
results generate mortality damages only through 2100, due to limited availability of climate and socioeconomic projections for
years beyond that date. To capture impacts after 2100, we extrapolate observed changes in damages over the 21st century to
generate time-varying damage functions through 2300. The resulting damage functions are shown in light grey for every 50
years post-2100, each of which is extrapolated. The distribution of temperature anomalies around 2200 (2181-2200) under two
emissions scenarios using the FaIR simple climate model is in the bottom panel. To value lives lost or saved, in both panels we
use the age-varying U.S. EPA VSL and an income elasticity of one applied to all impact regions.

• We use comprehensive historical mortality records to quantify how death rates across the globe have

been affected by observed climate changes. Specifically, we compile the largest sub-national vital

statistics database in the world, detailing 399 million deaths across 41 countries accounting for 55

percent of the global population. These mortality records are combined with decades of detailed daily

and local temperature observations.

• We econometrically estimate the relationship that extreme cold and extreme heat have on death rates
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in the historical data. We find that the mortality-temperature relationship is strongly modified by

the climate and income levels of the affected population, demonstrating that adaptation affects the

vulnerability of a population to extreme temperatures.

• We use these empirical mortality-temperature relationships to generate projections of the future im-

pacts of climate change on mortality rates for areas across the globe, dividing the world into 24,378

distinct regions (each containing roughly 300,000 people, about the size of a U.S. county) up to 2100.

These projections account for the benefits of adaptation by allowing mortality-temperature relation-

ships to evolve into the future as climates warm and incomes rise.

• We develop a technique to estimate the cost of adaptive behaviors and technologies (4 ). When com-

bined with projections of mortality effects of climate change including adaptation benefits, these projec-

tions capture the full mortality risk of climate change, for the first time accounting for both adaptation

benefits and costs, in addition to direct mortality impacts.

• Projected impacts of the full mortality risk of climate change are then monetized and used to determine

the costs of excess mortality risk in a given year. This monetization uses the U.S. EPA value of a

statistical life (VSL), and applies an income elasticity of one to scale the VSL across the globe, using

country-level incomes.54

• These projections include five scenarios for future income and population growth, two trajectories of

future greenhouse gas emissions, and simulations from 33 climate models, allowing for an assessment

of the uncertainty surrounding any particular projection. The full estimates also reflect statistical

uncertainty related to the underlying economic and health data.

• For a detailed description of the methods and results summarized above, please see Carleton et al

(2022) (4 ).

C.2 Energy

• We match globally representative, longitudinal data on energy consumption with 0.25◦ × 0.25◦ glob-

ally harmonized historical climate data. Energy consumption data are derived from International

Energy Agency (IEA) data files that describe electricity and direct fuel consumption across residential,

commercial, industrial, and agricultural end-uses (excluding transportation) in 146 countries during

1971-2010.
54The U.S. EPA’s VSL for 2020 amounts to $9,926,524.56 (2019$). Starting from the original published VSL (1990 VSL =

$4.8mil (1990$)) and following the methodology described in the 2010 EPA Guidelines, the 1990 VSL was adjusted for inflation
to the dollar year of DSCIM (2019$) using the annual GDP deflator and adjusted over time to a 2020 EPA VSL using an IEVSL
= 0.4 and income data (real GDP per capita) from the most recent annual FRED series.
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Figure 7: Empirically derived global energy damage functions Total global electricity consumption impacts
(left) and other fuels consumption impacts (right) at end-of-century, indexed against ∆GMST realized in each climate model
simulation (blue dots=RCP 4.5; red dots=RCP 8.5). Black lines represent end-of-century quadratic damage functions, which
are estimated through the points shown. Shaded areas indicate the range between 5th and 95th percentiles. Probability density
functions display the distribution of ∆GMST at end-of-century in each emissions scenario.

• We econometrically estimate the effect of historical temperature distributions on national annual

per capita energy consumption using random year-to-year variation, and measure how this energy-

temperature response differs across energy types (electricity and other fuels), income levels, and climate

zones.

• We project impacts of climate change in 24,378 globally comprehensive geographic regions (roughly the

size of US counties) through 2099 by combining the econometric results with a probabilistic ensemble of

downscaled climate projections based on CMIP5 models. When projecting these impacts, we account

for how the energy-temperature response will evolve as populations become richer and exposed to

warmer climates.

• We monetize and pool the empirically derived impact projections, aggregating damages across locations

and indexing them against the global mean surface temperature anomaly (∆GMST) expressed in each

climate model realization. Damages are projected under five scenarios for future income and population

growth, two trajectories of future greenhouse gas emissions, and simulations from 33 climate models,

allowing for an assessment of the uncertainty surrounding any particular projection. The full estimates

also reflect statistical uncertainty related to the underlying energy-temperature response estimates.

• To monetize the projected impacts of climate change on energy consumption, we apply country-specific

real prices for electricity and other fuels to the projected quantity impacts, thus reflecting differential

costs across geographies and fuels.
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• Impacts on electricity consumption are valued using an average cost of electricity generation, which the

IEA’s World Energy Outlook 2017 provides globally as of 2016 at the country or world region level.55

Impacts on other fuels consumption are valued using residential and non-residential end-user prices

excluding taxes, which the IEA’s Energy Prices and Taxes dataset provides for coal, oil, and natural

gas fuels in 55 countries as of 2012.56 Countries that lack price data for a given fuel are assigned the

global average price for that fuel. To obtain a price for the pooled, multi-fuel “other fuels” category,

we weight the prices of the individual fuels according to their shares in a country’s overall “other fuels”

consumption as of 2012 (the most recent year for which consumption data are available).57 Thus, each

country receives unique prices at which its impacts on other fuels consumption are valued.58

• To extrapolate prices into the future, we use US average annual price growth rates for electricity and

other fuels between 2020 and 2050, as projected by the US Energy Information Administration’s Annual

Energy Outlook 2021 (AEO). We apply these growth rates up to the year 2099 to the baseline country

× fuel prices described above. Specifically, based on AEO projections, we allow electricity prices to

decline by 0.27% per year and other fuels prices to rise by 0.82% per year.59

• For a detailed description of the methods and results summarized above, please see Rode et al. (2021)

(3 ), which is published at Nature.

C.3 Labor Supply

• We harmonize daily and weekly worker-level labor supply data from time use and labor force surveys

in seven countries (USA, Mexico, Brazil, France, UK, Spain, and India) and combine these data with

detailed daily and local temperature observations.

• We systematically evaluate the nonlinear response of labor supply to daily temperature separately for

workers in “high-risk" sectors (i.e., weather-exposed sectors– agriculture, mining, construction, and

manufacturing) and low-risk sectors (all others).
55Costs are specified for the following geographies: Japan, European Union, Korea, Brazil, Australia, Mexico, Southeast

Asia, Middle East, India, Africa, United States, China, Canada, Russia. When a cost is not available specific to a particular
geography we extend these costs based on UN world region classifications: Oceania receives the Australia cost, N., S., and
W. Europe receive the EU cost, E. Europe receives the Russia cost, Central America/Caribbean receive the Mexico cost, S.
America receives the Brazil cost, N. Africa receives the Middle East cost, and S. Asia receives the India cost.

56We take a weighted average of residential and non-residential prices, with a weight of 16% on residential and 84% on
non-residential. These weights are determined based on the average share of consumption in these two sectors in the set of 55
countries where a sectoral breakdown is available.

57Although our consumption data do cover fuels besides coal, oil, and natural gas (including solar, geothermal, and biofuels),
no price data are available for fuels other than coal, oil, and natural gas. We therefore extend the weighted average price to the
remaining fuels.

58Even countries that are assigned the global average price for the individual fuels will differ in the shares of each fuel in their
other fuels consumption mix.

59The electricity price growth rate is of a consumption-weighted average electricity price across residential, commercial, and
industrial sectors. The other fuels price growth rate is of a consumption-weighted average price across multiple fuels (i.e.,
natural gas, metallurgical coal, other coal, coal to liquids, distillate fuel oil, residual fuel oil, propane, and motor gasoline) in
residential, commercial, and industrial sectors.
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• We apply these labor supply-temperature responses over novel probabilistic climate change projections

to project the effects of climate change on the labor supply of high- and low-risk workers in each of

24,378 impact regions. Importantly, in characterizing total impacts in each region, we take into account

the changing composition of its workforce over time across high- and low-risk workers. Future shares of

high- and low-risk workers are predicted based on present-day empirical estimates of how these shares

vary as a function of income and average climate, together with high-resolution data on future incomes

and climates.

• Interpreting labor supply impacts of climate change through a simple theoretical framework, we mon-

etize the implied disutility to workers of a warmer climate, following the method in Rode et al. (2021)

(22 ). This monetized value is calculated in terms of the compensating wage increase needed to offset

the implied disutility due to warming, which is revealed by the labor supply response of workers to

warmer temperatures.

• We aggregate projected monetized disutility costs (i.e., damages) across all workers in all locations

globally to obtain total global damages. Damages are projected under five scenarios for future income

and population growth, two trajectories of future greenhouse gas emissions, and simulations from 33

climate models, allowing for an assessment of the uncertainty surrounding any particular projection.

The full estimates also reflect statistical uncertainty related to the underlying dose-response function

estimates.

• For a detailed description of the methods and results summarized above, please see Rode et al (2022)

(22 ).

C.4 Agricultural Productivity

• We assemble one of the largest datasets of subnational crop production available to researchers, con-

structing a dataset for six crops in 12,658 locations (41,186 location-crop pairs) in 55 countries spanning

up to 137 years. We cover the staple crops maize, soybean, rice, wheat, cassava, and sorghum; rep-

resenting two thirds of global crop caloric production. These data are drawn from individual country

sources for each country and span varying numbers of years. Full details can be found in (23 ).

• A key issue is determining what weather variables are important for future crop yields, as a wide range

of candidate weather measures has been proposed in the literature, but debate has continued over

which are of first-order importance. These include, for example, vapor pressure deficit, degree days,

minimum temperature, drought, the count of rainy days, and the total amount of extreme rainfall.

We adapt cross-validation, a machine learning technique, to a causal inference context, enabling us to

systematically assess a rich set of channels through which weather shocks might causally affect yields
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Figure 8: Empirically derived labor supply damage function The damage function above relates empirically
derived total global labor disutility damages to anomalies in global mean surface temperature (∆GMST) at end-of-century.
Each point (red = RCP8.5, blue = RCP4.5) indicates the global labor disutility costs of climate change in a single year
(ranging from 2095 to 2099) for a single simulation of a single climate model, accounting for changes to workforce composition
as incomes grow and the climate warms. The black line represents the end-of-century quadratic damage function, which is
estimated through the points shown. Shaded areas indicate the range between 5th and 95th percentiles. Probability density
functions display the distribution of ∆GMST at end-of-century in each emissions scenario.

in each of our crops, while also systematically assessing the extent to which farmers might use access

to income, irrigation, or expectations of long-run climate to mitigate these yield losses.

• We account for adaptation (30 ) by observing the real world trade-offs that farmers make as they

are confronted with different climates under different socioeconomic conditions, and estimate implied

adaptation costs (4 ) assuming a profit-maximizing farmer.

• Following (4 ), we use our empirically based, adaptation-adjusted yield-temperature and yield-precipitation

relationships to generate projections of the future impacts of climate change on crop yields for areas

across the globe, dividing the world into 24,378 distinct regions (each containing roughly 300,000

people, about the size of a U.S. county) up to the end of the 21st century.

• We develop an approach to value changes in future global yields under climate change. To do this,

we assign country-specific average prices to total calorie production, allowing producers to intensify or

reduce production in order to meet demand in their market at increasing marginal cost. In general,

aggregate yield losses under climate change harm consumers as caloric consumption is lower and prices

are higher; producers are also harmed by production losses, but this harm may be offset by profit gains
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Figure 9: Empirically derived agriculture damage function Empirical damage function describing calories (kCal)
lost as a quadratic function of the global mean surface temperature anomaly (∆ GMST). Each point represents a single climate-
model-by-Monte-Carlo run for RCP 4.5 (blue) or RCP 8.5 (red) in 2093-2097. Grey bands indicate quantiles 10-90 and 25-75,
conditional on ∆ GMST. The bottom panel shows the distribution of warming under each RCP, boxplots to the right show
the distribution of end-of-century damages by RCP. The right axis describes end-of-century caloric losses normalized by 2015
global caloric production of the six crops studied here (maize, soybean, rice, wheat, cassava, and sorghum).

from higher prices. All estimates and projections of yield impacts account for within-crop varietal

switching. In monetizing these yield impacts, we additionally account for costly changes in the total

amount of agricultural land (along a long-run supply curve) in response to price signals caused by net

changes to the overall supply of staple crops under climate change. This movement along the long-run

supply curve is in response to the price signal from slow moving (and therefore expected) changes in

supply in-line with climate change; annual weather deviations from the long-run trend are unexpected

and occur after planting decisions have been made, so farmers cannot respond to this component of

the price signal. We apply a simple shrinkage estimator to the variance in prices to account for the

price and quantity effects of storage. Consumers demand calories with perfect substitution between

crops, with the distribution of cropped locations and crop types held fixed. Trade is assumed to be

frictionless within set markets, and zero between these markets.

• As a last step in the valuation process, the results are multiplied by 0.45 to account for crop switching

and global trade protective effects, based on an average of the estimates in prior research documenting

these quantities (e.g., (31 ); (32 ); (33 ); (34 )). The DSCIM-EPA results also account for the benefits of

CO2 fertilization on crop yields based on established estimates in the literature (Moore et al., 2017).
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Based on the various scenarios presented in (23 ), CO2 fertilization is generally found to affect crop

yields by 5.0-9.5% and monetized damages by less than 5%.

• For a detailed description of the methods and results summarized above, please see (23 ).

C.5 Coastal

Our sea level rise impact projections rely on outputs from pyCIAM, a model derived from the Coastal

Impact and Adaptation Model (CIAM, (35 )) and modified with updated input data, improved process

representation, and increased scalability (27 ). The functionality of that model is described in (27 ), though

inputs used in that manuscript differ slightly from those used in this version of DSCIM, due to the need

to ensure consistency in input data across sectors. Below, we briefly describe the data inputs used in this

version:

• We create a global model of coastal dryland and wetland area, historical population, and physical

capital by coastline segment and 10cm elevation bins. We do so by aggregating best-available high-

resolution global datasets describing capital distribution (LitPop v1.2, (36 )), population (Landscan

2011, (37 )), coastal elevation (CoastalDEM v1.1, (38 )), and wetland/mangrove extent (GLOBCOVER

v2.3, (39 ); Global Mangrove Watch 2016 (40 )).

• We augment these data with estimates of Local Mean Sea Level (LMSL, AVISO+ Mean Dynamic

Topography, (41 )) and extreme sea level (ESL) distributions (CoDEC, (42 )). These data combined

allow for the representation of historical flood exposure.

• To model future exposure consistent with the SSPs, we estimate local SLR using the LocalizeSL model

(v3.2, (43 , 44 ))60 and population and income using the downscaled SSP income dataset following

the common approach used across sectors (e.g. (4 , 3 )). Furthermore, we leverage the capital growth

model contained within the OECD Env-Growth model (24 ) to project country-level trends in physical

capital. These country-level trends are used to scale segment-by-elevation capital stock data over time.

• Current and projected future representations of exposure (land area, physical capital, and population)

and hazard (SLR and extreme sea levels) are aggregated into a single dataset - the Sea Level Impacts

Input Dataset by Elevation, Region, and Scenarios (SLIIDERS) dataset (27 ).61 Dryland and wetland

values are estimated from country-level income and local population density (for dryland value), based

on the corresponding equations in (27 ) (derived from (35 )). The fraction of each country’s capital stock

that is mobile is estimated from capital class categorizations in Penn World Table 10.0 (45 ). Country-

level construction costs are taken from the 2021 World Bank International Comparison Project (ICP)
60Available at: https://github.com/bobkopp/LocalizeSL
61The dataset used in the DSCIM model described here differs slightly from the dataset released with this manuscript, to

ensure consistency in socioeconomic data across all DSCIM sectors
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(46 ) and augmented with data from (47 ) for countries not appearing in the ICP. A country-level

resilience factor used in CIAM is updated based on downscaled income. Country-level VSL values are

used internally within the optimal adaptation model to value extreme sea level-driven mortality when

determining an optimal adaptation pathway. Country-level VSL is also used when valuing mortality

impacts along that optimal pathway.

• pyCIAM estimates protection and retreat strategies, as well as incurred costs, for a set of mutually

exclusive global coastal segments. We use a set of 9,096 segments (19,714 unique intersections of

coastal segment and impact region) based on the locations at which extreme sea levels are estimated

in the CoDEC input dataset. Costs are divided into those arising from managed and unmanaged

retreat, dryland lost to inundation, wetland lost to inundation and protective barriers, construction

and maintenance of those protections, and life and property lost due to storm surge. The specification

of internal functions used to estimate these various cost types and to determine optimal adaptation

strategy by segment are described in detail in (27 ).

• We run pyCIAM on the three SSP scenarios (using the two growth models to project capital stock and

income)62; 11 SLR scenarios based on the CMIP5 RCP emissions pathways63 and various assumptions

of sea level dynamics; and 10,000 Monte Carlo samples to represent the distribution of possible local

mean sea level (LMSL) values conditional on each of those scenarios. This results in 660 thousand

unique simulations of coastal costs and adaptation under different future trajectories of hazard and

exposure (110,000 SLR trajectories and 6 socioeconomic trajectories). We additionally run the model

for 10,000 Monte Carlo samples representing background LMSL change in the absence of climate

change. This background change includes factors such as Glacial Isostatic Adjustment (GIA), tectonics,

and subsidence. The difference in projected average annual loss (AAL) between each “with climate

change” sample and the corresponding “without climate change” sample defines the sea level rise-

attributable damages for that Monte Carlo draw.

• We then group the 110,000 SLR realizations based on their GMSL value in each year to create a

conditional distribution of possible coastal damages as a function of year and GMSL, for each choice of

socioeconomic trajectory. These estimates are then used to construct coastal damage functions relating

damages to GMSL, identically to how damage functions relating damages to GMST are constructed

for other sectors.

• To model damages from a GHG pulse, we need to model the impact of that pulse on GMSL. To do

this, the NASEM “Valuing Climate Damages” report suggested the use of semi-empirical models to
62(27 ) incorporate 5 SSP scenarios, however due to cross-sectoral consistency, only 3 are used here.
63CMIP5 RCP emissions pathways are used in the LocalizeSL modeling, however the remainder of the DSCIM coastal

sector relies on CMIP6 RCP emissions pathways. Unless otherwise specified, "RCP" in this section refers to CMIP6 emissions
scenarios. This is meant to avoid confusion between the naming of the SSP socioeconomic pathways and the "SSP-RCP" (e.g.
"SSP3-7.0") nomenclature used in CMIP6 representative concentration pathway emissions pathways.
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define the statistical relationship between GMST and GMSL (1 ). We use the model shown as an

example in that report, appropriately titled the Semi-Empirical Sea Level (SESL) model (48 ), which

is calibrated to geological evidence about the relationship between GMST and GMSL over the last two

thousand years. We run this model on the FaIR GMST outputs both with and without a GHG pulse to

generate an equivalent number of GMSL realizations. We subtract the runs without the pulse from the

runs with the pulse to determine the impact of the pulse on GMSL. We then add this distribution of

GMSL pulse differences to baseline probabilistic projections of GMSL, modeled using the Framework

for Assessing Changes to Sea-level (FACTS) as described in the IPCC’s 2021 Sixth Assessment Report

(AR6) (21 , 49 ). We align this distribution of baseline GMSL with that of the GHG pulse-induced

marginal SLR by quantile mapping the SESL outputs under the control experiment (i.e. no pulse)

with the FACTS-based distribution in each year and for each RCP. For example, the pulse associated

with the 60th percentile of GMSL in 2050 for RCP7.064 under the control scenario is added to the 60th

percentile of RCP7.0 projections in 2050 from FACTS. This quantile mapping is defined mathematically

as:

h̃base,r,y,p = ppf (hFACTS,r,y, cdf (hSESLbase,r,y, hSESLbase,r,y,p)) (20)

h̃pulse,r,y,p = h̃base,r,y,p + hSESLpulse,r,y,p − hSESLbase,r,y,p (21)

where

– h̃base/pulse,r,y,p are the bias-corrected GMSL projections for scenarios without (base) and with

(pulse) a GHG pulse, for RCP scenario r, in year y, using draw p from the distributions of climate

and sea level parameters characterizing FaIR and SESL, respectively;

– hSESLbase,r,y,p is the SESL-based GMSL projection for the same indices of RCP, year, and pa-

rameter draw;

– hm,r,y =


hm,r,y,1

hm,r,y,2

...

hm,r,y,np

 is the full distribution of GMSL projections for model m (either FACTS or

SESLbase) across all np climate and sea level parameter draws;

– cdf(d, v) is the empirical cumulative distribution function for distribution d and value v; and

– ppf(d, q) is the percent point function (inverse cdf) for distribution d and quantile q

The bias correction of SESL-based GMSL values to the distribution seen in the IPCC AR6 ensures

consistency with the best available assessment of projected future sea-level rise. Notably, however,
64We use "RCP7.0" to replace the CMIP6 nomenclature of "SSP3-7.0" to avoid confusion with the SSP socioeconomic

pathways.
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our use of the FACTS AR6 projections differs from the presentation in AR6 in a few respects that

makes overall GMSL projections more conservative (both slightly lower and narrower). First, AR6

presents ‘p-boxes’ that characterize imprecise probabilities, produced by combining multiple probability

distributions of sea-level change for the same forcing. Such p-boxes take the outer limits of all the

probability distributions considered. For example, the likely range in AR6 has at least a 66% probability

of containing the true value. Such imprecise probabilities are ill-suited for benefit-cost analyses, and

so instead we combine the contributing probability distributions using equal weights. This will lead

the resulting distributions to be narrower than those presented in AR6. Second, while AR6 focuses

upon medium confidence projections that consider only those ice-sheet processes for which there is at

least a medium level of evidence with medium agreement, they also consider, in parallel, projections

that incorporate processes in which there is low confidence (limited evidence and/or low agreement)

regarding magnitude, rate, timing and thresholds (see AR6 WG1, Box 9.4). Our projections are

based upon the AR6 medium confidence projections exclusively, and so do not consider, for example,

potential contributions from Marine Ice Cliff Instability. Finally, like our projections, AR6’s medium

confidence projections from 2100 to 2150 are based upon the assumption on no additional ice-sheet

acceleration after 2100; however, beyond 2150, there is low confidence in all projections, and so AR6

combines multiple additional methods to project GMSL rise in 2300. Our projections through 2300

are consistent with the approach adopted by AR6 through 2150 and do not incorporate these alternate

methods, leading our 2300 projections under SSP5-8.5 to be lower and narrower than those emphasized

in AR6 (e.g. in AR6 WG1, Fig. SPM.8).

• The FACTS-based baseline GMSL trajectories are only available for the CMIP6 RCP emissions trajec-

tories. To approximate baselines for each of the 10,000 RFF-SP GMSL scenarios (10,000 joint draws

of RFF-SP and FaIR/SESL climate parameters), we employ a 3-step process:

1. For each year, y, of the projection, we search for the two “bounding” RCP scenarios, rlow and rhi.

To do this, we first identify the FAIR/SESL parameter draw, ps, associated with this RFF-SP

draw, s, and find the corresponding SESL-based GMSL projection, hSESLbase,RFF-SPs,y,ps
. We

then find the SESL-based GMSL projections associated with each of the RCPs for the given year

and parameter draw, hSESLbase,r,y,ps
. We find the two RCPs, rlow and rhi, with GMSLs that most

closely bound that of the RFF-SP draw, conditional on the selection of ps. We assign weights to

these RCPs according to their relative distance from the RFF-SP. For example, suppose RFF-

SP10 has a projected GMSL of 0.78 m in 2100. Using FAIR/SESL parameter set p10, if RCP4.5

and RCP7.0 are the closest bounding scenarios with projections of 0.7m and 0.8m in 2100, we

would assign wRCP4.5 = 0.2 and wRCP7.0 = 0.8 for RFF-SP10 in 2100. See Figure 10a.65

65When the SESL-based GMSL for a given y and p falls outside of the bounds of GMSL across all RCP, we simply assign
unit weight to the nearest RCP.
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2. For both rlow and rhi we perform a quantile mapping from the SESL-based and FACTS-based

GMSL distributions using Equation 20, with a lookup value defined by the SESL-based GMSL

projection for the given RFF-SP scenario in the given year and with the given parameter draw

(0.78 m in the previous example). This yields us two bias-corrected representations of this value,

each derived from one of the bounding RCPs. See Figure 10b.

3. We take the weighted average of the two bias-corrected GMSL estimates, using the weights from

Step 1. See Figure 10c.

Figure 10: Schematic of GMSL Projection Approach This figure illustrates the process to bias-correct Semi-
Empirical Sea Level projections for the RFF-SPs. In (a), we determine the bounding SSP-RCPs for a given RFF-SP, year, and
FAIR/SESL parameter draw. The figure uses 10 as an example RFF-SP draw index, matched to a FAIR/SESL parameter draw
with the same index. Only three SSP-RCPs are shown for illustration. In (b), we quantile map from the SESL-based GMSL
projections to the FACTS-based GMSL projections for each of the two bounding SSP-RCPs. In (c), we take the weighted
average of the two quantile mapped projections.
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Figure 11: Model-derived coastal damage function Damage function describing aggregate economic losses due
to sea level rise as a function of the global mean sea level anomaly (∆ GMSL). Each point represents the average annual
loss calculated from a single realization of local mean sea levels (LMSLs) consistent with the associated GMSL value in the
2085-2105 period (centered on 2095). These GMSL values are relative to the GMSL in 1990-2010. The black line indicates the
damage function defined by Ordinary Least Squares (OLS) regression, while grey bands display quantile regression results for
quantiles 1-99, 10-90, and 25-75. Damages arise from land value loss, storm surge-driven mortality and capital stock losses,
domestic migration, construction of local protections, and wetland loss. They are estimated separately for 9,500 unique coastal
segments using the CIAM model. The bottom panel shows the distribution under SSP2-4.5, SSP5-8.5, and a low-likelihood,
high-consequence scenario involving plausible ice sheet dynamics that lead to high GMSL values when coupled with the SSP5-
8.5 emissions trajectory.
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